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Abstract

We show that the Delaunay triangulation of a set of n points distributed nearly uni-

formly on a p-dimensional polyhedron (not necessarily convex) in d-dimensional Eu-

clidean space is O(n
d−k+1

p ), where k = dd+1
p+1e. This bound is tight, and improves on

∗amenta@ucdavis.edu. Computer Science Department, University of California, One Sheilds Ave,

Davis, CA 95616. Fax 1-530-752-5767. Supported by NSF CCF–0093378.
†Dominique.Attali@lis.inpg.fr. Gipsa-lab, ENSIEG, Domaine Universitaire, BP 46, 38402

Saint Martin d’Hères, France. Supported by the EU under contract IST-2002-506766 (Aim@Shape) and

CNRS under grant PICS 3416.
‡Olivier.Devillers@sophia.inria.fr. INRIA, BP 93, 06902 Sophia-Antipolis, France.

Supported by the EU under contract IST-2002-506766 (Aim@Shape)

1



the prior upper bound for most values of p.

1 Introduction

Overview. The Delaunay triangulation of a set of points is a fundamental geometric

data structure, used, in low dimensions, in surface reconstruction, mesh generation,

molecular modeling, geographic information systems, and many other areas of science

and engineering. In higher dimensions, it is well-known [10] that the complexity of

the Delaunay triangulation of n points is O(nd
d
2 e) and that this bound is achieved

by distributions of points along one-dimensional curves such as the moment curve.

But points distributed uniformly in Rd, for instance inside a d-dimensional ball, have

Delaunay triangulations of complexity O(n); the constant factor is exponential in the

dimension, but the dependence on the number of points is linear. In an earlier paper [1],

we began to fill in the picture in between these two extremes, that is, when the points are

distributed on a manifold of dimension 2 ≤ p ≤ d − 1. We began with the easy case

of a p-dimensional polyhedron P , and showed that for a particular (probably overly

restrictive) sampling model the size of the Delaunay triangulation is O(n(d−1)/p).

Main result. Here as in [1], we consider a fixed p-dimensional polyhedron P in d-

dimensional Euclidean space Rd. Our point set S is a sparse ε-sample from P . Sparse

ε-sampling requires the sampling to be neither too sparse nor too dense. Let n be the

number of points in S. We consider the complexity of the Delaunay triangulation of S,

as n → +∞, while P remains fixed. The main result in this paper is that the number

of simplices of all dimensions is O(n
d−k+1

p ) where k = dd+1
p+1e. The hidden constant
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factor depends, among other things, on the geometry of P , which is constant since P

is fixed. This bound is tight. It directly improves on the bound established in [1] for all

1 ≤ p < d−1
2 .

At the coarsest level, the idea of this proof is the same as that of [1]: we map De-

launay simplices to the medial axis and then use a packing argument to count them.

The key new idea is the observation that when k = dd+1
p+1e > 2, the vertices of any De-

launay simplex, which must span Rd, have to be drawn from more than two faces of P .

This allows us to map Delaunay simplices to only the lower-dimensional submanifolds

of the medial axis, induced by k or more faces. This idea is embodied in Corollary 6.

We structure the definition carefully so that we can avoid making any non-degeneracy

assumptions on the input polyhedron. An important technical innovation is the intro-

duction of a new geometric structure, the quasi medial axis, which replaces the centers

of tangent balls defining the medial axis with the centers of tangent annuli.

Prior work. The complexity of the Delaunay triangulation of a set of points on a two-

manifold in R3 has received considerable recent attention, since such point sets arise in

practice, and their Delaunay triangulations are found nearly always to have linear size.

Golin and Na [6] proved that the Delaunay triangulation of a large enough set of points

distributed uniformly at random on the surface of a fixed convex polytope in R3 has

expected size O(n). They later [5] established an O(n lg6 n) upper bound with high

probability for the case in which the points are distributed uniformly at random on the

surface of a non-convex polyhedron.

Attali and Boissonnat considered the problem using a sparse ε-sampling model sim-
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ilar to the one we use here, rather than a random distribution. For such a set of points

distributed on a polygonal surface P , they showed that the size of the Delaunay trian-

gulation is O(n) [2]. In a subsequent paper with Lieutier [3] they considered “generic”

smooth surfaces, and got an upper bound of O(n lg n). Specifically, a “generic” sur-

face is one for which each medial ball touches the surface in at most a constant number

of points.

The genericity assumption is important. Erickson considered more general point

distributions, which he characterized by the spread: the ratio of the largest inter-point

distance to the smallest. The spread of a sparse ε-sample of n points from a two-

dimensional manifold is O(
√

n). Erickson proved that the Delaunay triangulation of

a set of points in R3 with spread ∆ is O(∆3). Perhaps even more interestingly, he

showed that this bound is tight for ∆ =
√

n, by giving an example of a sparse ε-

sample of points from a cylinder that has a Delaunay triangulation of size Ω(n3/2) [4].

Note that this surface is not generic and has a degenerate medial axis.

To the best of our knowledge, ours [1] is the only prior result for d > 3.

Outline of the proof. We begin by introducing the ε-quasi k-medial axis, a variant

of the medial axis based on tangent annuli rather than tangent balls. We then define

the part of the ε-quasi k-medial axis to which Delaunay simplices will be mapped: the

essential ε-quasi k-medial axis (considering only the parts induced by k or more faces,

and lopping off the parts which extend to infinity). By definition, this object has dimen-

sion at most d−k+1 and we prove that its (d−k+1)-dimensional volume is bounded

from above by a constant that does not depend on ε. It follows that we can construct
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an ε-sample M of the essential ε-quasi k-medial axis with m = O(ε−(d−k+1)) points.

We then turn our attention to assigning Delaunay simplices to the samples in M .

We define the cover of a point z as

Cover(z) =
⋃

x∈Π(z)

B(x, 5dε),

where Π(z) is the set of all orthogonal projections of z onto the planes supporting faces

of P , and B(x, r) is the ball centered at x with radius r. For k = dd+1
p+1e, we map each

Delaunay simplex σ to a point z ∈ M in such a way that the vertices of σ are contained

in the cover of z; this is done by associating an annulus with a Delaunay simplex, and

then “growing” the annulus to increase the number of its tangent points. Since the cover

of each point z ∈ M contains a constant number of points in S, each point z ∈ M

can only be charged for a constant number of Delaunay simplices. It follows that the

size of the Delaunay triangulation is bounded from above by the size of M which is

m = O(ε−(d−k+1)). Since our point set S is a sparse ε-sample from a p-dimensional

polyhedron, its cardinality is n = Ω(ε−p). Eliminating ε gives the O(n
d−k+1

p ) upper

bound. The lower bound is a straightforward construction of a polyhedron P .

2 Statement of Theorem

In this section, we introduce the setting for our result. We assume that the reader is

familiar with notions of abstract and geometric simplicial complexes [11] and we use

those notions to define Delaunay triangulations and polyhedra.
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2.1 Delaunay triangulation.

We call any finite non-empty collection of points σ ⊆ Rd an abstract simplex. The

points in σ will be referred to as the vertices of σ. Let S ⊆ Rd be a finite set of points.

The Voronoi region V (s) of s ∈ S is the set of points x ∈ Rd with ‖x− s‖ ≤ ‖x− t‖

for all t ∈ S. The Delaunay triangulation Del(S) of S is the nerve of the Voronoi

regions. Specifically, an abstract simplex σ ⊆ S belongs to the Delaunay triangu-

lation iff the Voronoi regions of its vertices have a non-empty common intersection,⋂
s∈σ V (s) 6= ∅. Equivalently, the simplex σ is in the Delaunay triangulation iff there

exists of a (d − 1)-sphere, called Delaunay sphere, that passes through all vertices of

σ and encloses no point of S. In this paper, we allow d + 2 or more points in S to

be co-spherical. These points may create Delaunay simplices with dimension higher

than d. The complexity (or size) of the Delaunay triangulation is the total number of its

simplices of all dimensions. We express this as a function of n, the number of points

in S.

2.2 Polyhedron.

We call the underlying space of any geometric simplicial complex of dimension p a

p-dimensional polyhedron. To define the faces of a polyhedron, we need some defini-

tions. Given X ⊆ Rd, we define the affine space Aff(X) spanned by X to consist of

all points x of Rd such that

x =
∑
i∈I

αixi,

for some finite set of integers I , points xi ∈ X and scalars αi with
∑

i∈I αi = 1. The

dimension of Aff(X) is the smallest amount of points that span Aff(X) minus one.
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An affine space of dimension i is called a i-plane. Given a polyhedron P and a point

x ∈ P , the tangent plane to P at x is the largest i-plane H through x such that a small

neighborhood of x in H is contained in P . A face F of P is a maximal collection

of points with identical tangent plane. If the dimension of the tangent plane is i, F is

an i-face. The 0-faces are the vertices of P . Note that with our definition, faces are

relatively open and every point x ∈ P belongs to a unique face that we denote by Fx.

2.3 Sampling and Theorem.

Given a polyhedron P ⊆ Rd, we say that a set of points S ⊆ P is a λ-sparse ε-sample

of P iff it satisfies the following two conditions:

Density: Every point x in P is at distance ε or less to a point in S lying on the

closure of Fx. In other words,

∀x ∈ P, ∃s ∈ S ∩ cl(Fx), ‖x− s‖ ≤ ε;

Sparsity: Every closed d-ball with radius 5dε contains at most λ points of S.

Note that our density condition implies that all faces of all dimensions are uni-

formly sampled, not just faces with highest dimension. Afterwards, we consider λ to

be a constant. The number n of points in a λ-sparse ε-sample of a p-dimensional poly-

hedron is related to ε by n = Θ(ε−p). Thus, as n tends to infinity, ε tends to zero. We

are now ready to state our main result:

Theorem 1 Let S be a λ-sparse ε-sample of a p-dimensional polyhedron P in Rd,

and let n be the number of points in S. The Delaunay triangulation of S has size

O(n
d−k+1

p ) where k = dd+1
p+1e and λ is a constant.
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Note that our result requires no non-degeneracy assumption, neither on P nor on

S.

3 Essential quasi medial axes

In this section, we first define the ε-quasi k-medial axis Mk(P, ε) which is the key

geometric object in our proof. We shall see that because P might be degenerate, we

must introduce tools to identify the parts of Mk(P, ε) which have dimension d−k +1

or less very carefully. We also rigorously characterize a “finite” part of Mk(P, ε)

whose dimension is d − k + 1. We call this finite part the essential ε-quasi k-medial

axis M̄k(P, ε), and we prove that its volume is bounded by a constant that does not

depend on ε. We will see in Section 4 that given these definitions and tools, it is not

too difficult to map Delaunay spheres to points on M̄k(P, ε).

3.1 Quasi medial axes

We start by defining ε-quasi k-medial axes. If X is a subset of Rd, we denote the

closure of X by cl(X) and write Aff(X) for the affine space spanned by X . We say

that a (d − 1)-sphere Σ is tangent to a face F at point x if both cl(F ) and Aff(F )

intersect Σ in a unique point x. In other words, letting z and r designate respectively

the center and radius of Σ, we have

d(z, cl(F )) = d(z,Aff(F )) = r.

Since faces are relatively open, a sphere Σ tangent to a face F at point x may have an

empty intersection with F , i.e. Σ ∩ F = ∅. Note also that a sphere can be tangent to
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several faces of the polyhedron P at x and the face Fx is the unique one amongst them

which contains x.

An annulus with center z, inner radius r and outer radius R is the set of points x

whose distance to the center satisfies r ≤ ‖x − z‖ ≤ R. The boundary of an annulus

consists of two (d − 1)-spheres and we call the smallest one the inner sphere and the

largest one the outer sphere. Extending what we just defined for spheres, we say that

an annulus A is tangent to F at x if one of the two spheres bounding A is tangent to F

at x (see Figure 6). Point x is called a tangency point of A. An annulus is P -empty if its

inner sphere bounds a d-ball whose interior does not intersect P . An annulus is called

ε-thin if the difference between the outer and inner radii squared is R2−r2 = ε2. Note

that ε is not the width of the annulus.

Definition 2 The ε-quasi k-medial axis Mk(P, ε) of P is the set of points z ∈ Rd for

which the largest P -empty ε-thin annulus centered at z is tangent to at least k faces of

P .

Afterwards, we write A(z, ε) for the largest P -empty ε-thin annulus centered at z.

It should be observed that the 0-quasi 2-medial axis is a superset of the medial axis.

Indeed, the medial axis of the polyhedron is the set of points z ∈ Rd for which A(z, 0)

touches the polyhedron in two points or more, while the 0-quasi 2-medial axis is the

set of points z for which A(z, 0) is tangent to two faces of P or more. Figure 1 pictures

an example of ε-quasi 2-medial axis in R2.
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z

ε

A(z, ε)

Figure 1: A rectangle and its ε-quasi 2-medial axis composed of 16 half-lines, 5 segments and 8

pieces of hyperbolas.

3.2 Stratification

Given a subset X ⊆ Rd, a stratification of X is a filtration

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xj = X

by subspaces such that the set difference Xi \ Xi−1 is -dimensional manifold, called

the i-dimensional stratum of X . In particular, semi-algebraic sets admit a stratification

[7] and since ε-quasi k-medial axes of polyhedra are piecewise semi-algebraic, they

also admit a stratification. In this section, we give conditions under which a point

z ∈Mk(P, ε) belongs to a stratum of dimension d− k + 1 or less.

For this, let us break down Mk(P, ε) into pieces. Specifically, we define Sj(P, ε)

as the set of points z ∈ Rd for which the annulus A(z, ε) is tangent to exactly j faces

of P . In particular,

Sj(P, ε) = Mj(P, ε) \Mj+1(P, ε).
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Without loss of generality, we now focus on Sk(P, ε). As we will see shortly, Sk(P, ε)

is not necessarily a (d − k + 1)-dimensional stratum of Mk(P, ε) as one might have

expected. We start by writing the equations that determine Sk(P, ε) locally around

z. Since A(z, ε) is tangent to exactly k faces F1, . . . , Fk, there exists δ > 0 such

that every face of the polyhedron not in {F1, . . . , Fk} is at distance at least δ to the

boundary of A(z, ε). Using a compactness argument as in [9], it follows that for a

point y close enough to z, the only faces possibly tangent to A(y, ε) are F1, . . . , Fk.

We set ei = −ε2 if Fi is tangent to the outer sphere of A(z, ε) and ei = 0 if Fi is

tangent to the inner sphere of A(z, ε). In a small neighborhood of z, Sk(P, ε) is thus

determined by the following k − 1 equations:

d(y, Fi)2 − d(y, Fk)2 + ei − ek = 0,

for 0 < i < k. Each equation is the zero-set of a polynomial of second degree that

identifies a quadric. It follows that Sk(P, ε) is piecewise a subset of the intersection of

k−1 quadrics. In general, k−1 hypersurfaces meet at point z in a (d−k+1)-manifold.

But in degenerate situations Sk(P, ε) can have dimension greater than d − k + 1 as

illustrated in Figure 2. We now give conditions under which such degeneracies cannot

happen at z:

Lemma 3 Suppose z ∈ Sk(P, ε) is the center of an annulus A(z, ε) tangent to the

polyhedron at k affinely independent points x1, . . . , xk. Then, Sk(P, ε) is a (d−k+1)-

manifold in a neighborhood of z. Furthermore, the tangent space to Sk(P, ε) at z is

spanned by the set of vectors orthogonal to the k− 1 vectors xk − x1, . . . , xk − xk−1.

PROOF. Let Fi = Fxi
be the face to which xi belongs. In a small neighborhood
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Figure 2: A box P . The set S4(P, 0) is the segment connecting the hollow dots and has dimen-

sion 1.

of z, Sk(P, ε) coincides with the zero-set of the map g : Rd → Rk−1 defined by

g(y) = (g1(y), . . . , gk−1(y)) with

gi(y) = d(y, Fi)2 − d(y, Fk)2 + ei − ek.

The map g is differentiable and the ith component of the derivative of g at z is Dgi(z)(v) =

2(xk−xi)·v. We note that rank(Dg(z)) = k−1 iff the k points x1, . . . , xk are affinely

independent, which is true by assumption. Applying the implicit function theorem, we

deduce that since the derivative Dg(z) : Rd → Rk−1 has rank k − 1, then g−1(0) is

a (d− k + 1)-dimensional manifold in a neighborhood of z. Furthermore, the tangent

space of g−1(0) at z is precisely equal to the null space of the derivative Dg(z), which

is the set of vectors orthogonal to xk − x1, . . . , xk − xk−1.

While the assumption that the tangency points of A(z, ε) are independent is suffi-
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cient to show that z belongs to a stratum of dimension at most d−k +1, this condition

is not necessary. We show that the stratum has dimension at most d− k + 1 under the

following weaker condition as well.

Definition 4 We say that k faces F1, . . . , Fk are independent if none of them is con-

tained in the affine space spanned by the union of the others, that is for 1 ≤ i ≤ k,

Fi 6⊆ Aff(F1 ∪ · · · ∪ F̂i ∪ · · · ∪ Fk),

where the symbol ̂ over Fi indicates that it is omitted in the union.

Lemma 5 Suppose that A(z, ε) is tangent to exactly k faces. If those k faces are

independent, then Sk(P, ε) is a stratified space of dimension at most d − k + 1 in a

neighborhood of z.

PROOF. We partition S = Sk(P, ε) into k pieces possibly empty. More precisely,

we write Si = Sk
i (P, ε) for the set of points y ∈ S which are the center of an annulus

A(y, ε) tangent to exactly k faces and whose tangency points span a space of dimension

i. Thus we have S =
⋃

i Si. Each piece Si is a semi-algebraic set and therefore admits

a stratification. All we need to prove is that in a small neighborhood U of z, each

stratified space Si has dimension at most d − k + 1 for all 0 ≤ i ≤ k. By Lemma 3,

we already know that Sk is a (d− k + 1)-dimensional manifold. Let us assume i < k.

Let F1, . . . , Fk be the k faces tangent to A(z, ε). Given y ∈ Rd, we denote the

orthogonal projection of y onto Aff(Fi) by xi(y) (see Figure 3). Using the same

compactness argument as before, there exists a small neighborhood U of z such that

for every point y ∈ U , the only faces possibly tangent to the annulus A(y, ε) are

F1, . . . , Fk. Consider y ∈ Si∩U . The tangency points of A(y, ε) are x1(y), . . . , xk(y)
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A(y, 0)

y Fj

Xj

x2(y) = xj(y)

F2

F1

x1(y)

S ′
Hj

Figure 3: Notations for the proof of Lemma 5. A(y, 0) is tangent to F1, F2 and Fj .

and span an affine space of dimension i. Without loss of generality, we may as-

sume that the first i tangency points x1(y), . . . , xi(y) are affinely independent. Let

P ′ = cl(F1) ∪ · · · ∪ cl(Fi) and write S ′ for the set of points which are the center

of a P ′-empty ε-thin annulus tangent to the i faces F1, . . . , Fi. By Lemma 3, S ′ is

a (d − i + 1)-manifold in a neighborhood of y. For i < j ≤ k, xj(y) is an affine

combination of x1(y), . . . , xi(y) and therefore belongs to

Xj = Aff(F1 ∪ · · · ∪ F̂j ∪ · · ·Fk−1).

It follows that Fj ∩Xj 6= ∅ and we can define Hj as the set of points w ∈ Rd such that

the nearest point to w on Aff(Fj) lies in Aff(Fj∩Xj). Equivalently, Hj can be defined

as the set of points equidistant to Aff(Fj) and Aff(Fj∩Xj). It is an affine space whose

dimension is d− dim Fj + dim(Fj ∩Xj). We claim that in a neighborhood of y,

Si ⊆ S ′ ∩Hi+1 ∩Hi+2 ∩ · · · ∩Hk.
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By construction, Si ⊆ S ′ in a neighborhood of y. Since x1(y), . . . , xi(y) are affinely

independent, there exists a neighborhood U ′ ⊆ U of y such that for every point y′ ∈

U ′, the tangency points x1(y′), . . . , xi(y′) are also affinely independent. Suppose y′ ∈

Si ∩U ′ and let us prove that y′ ∈ Hj for i < j ≤ k. The dimension of the affine space

spanned by x1(y′), . . . , xk(y′) is i. It follows that xj(y′) is an affine combination of

x1(y′), . . . , xi(y′) for i < j ≤ k. Thus, xj(y′) ∈ Aff(Fj ∩ Xj). Since by definition

xj(y′) is the orthogonal projection of y onto Aff(Fj), it follows that y′ belongs to Hj .

Therefore, Si ∩ U ′ ⊆ Hj , for all i < j ≤ k.

Let us prove that S ′ ∩ Hi+1 ∩ Hi+2 · · · ∩ Hk is a manifold of dimension at most

d− k + 1 in a neighborhood of y. By Lemma 3, the normal space to S ′ is spanned by

the i− 1 vectors v2 = x1(y)− xi(y), . . . , vi = xi−1(y)− xi(y). For i + 1 ≤ j ≤ k,

we can always find a vector vj in the normal space to Hj obtained by choosing vj

in the tangent plane to Fj and orthogonal to Fj ∩ Xj . By construction, the k − 1

vectors v2, . . . , vk are linearly independent and all belong to the normal space of the

intersection S ′∩Hi+1∩Hi+2∩· · ·∩Hk. It follows that the intersection is a manifold of

dimension at most d−k +1 and Si is a stratified space of dimension at most d−k +1.

We deduce immediately the following corollary:

Corollary 6 Let z ∈Mk(P, ε) and suppose that A(z, ε) is tangent to j faces amongst

which k faces are independent. Then, z lies on a i-dimensional stratum of Mk(P, ε)

with i ≤ d− k + 1.
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3.3 Essential part

In this section, we select a subset of the ε-quasi k-medial axis called the essential

ε-quasi k-medial axis, M̄k(P, ε), and prove that all its strata have a finite volume

bounded by a constant that does not depend on ε. We first define ε-essential points and

show that the set of ε-essential points is contained in a d-ball B(P ) whose definition

depends only on the geometry of P and does not depend on ε. For this, we need some

definitions. We say that a hyperplane supports X ⊆ Rd if it has non-empty intersection

with the boundary of X and empty intersection with the interior of X .

Definition 7 A point z is non ε-essential if there exists a hyperplane supporting the

convex hull of P and containing all faces tangent to A(z, ε).

It follows immediately that:

Lemma 8 If the union of faces tangent to A(z, ε) spans Rd, then z is ε-essential.

F0

F1 F2F3

Figure 4: A polyhedron formed of four faces and its 0-quasi 2-medial axis. The set of 0-essential

points is the closed piece of parabola consisting of points equidistant to F0 and F3.

Note that the set of ε-essential point is non-empty iff Aff(P ) = Rd. Also, if two

annuli A(z, ε) and A(z′, ε) share the same set of faces, then z and z′ are either both
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ε-essential or both non ε-essential (see Figure 4). We start with a technical lemma that

bounds the inner radius of an annulus based on the following observation: the only way

a sphere Σ through a point q and tangent to a hyperplane H at x can have infinite radius

is if either the distance of q to H is zero or the distance between q and x is infinite. Our

technical lemma makes this idea precise and extends it to annuli:

Lemma 9 Let A be an annulus tangent to a hyperplane H at point x and whose inner

sphere does not enclose point q. Suppose q and the center of A lie on the same side of

H . Let R and r be respectively the outer and inner radii of A. Suppose that there exist

two scalars D and h > 0 such that d(q, H) ≥ h, ‖x− q‖ ≤ D and R− r ≤ h
2 . Then,

the inner radius of A satisfies r ≤ D2

h .

c
q

H
x

A

y

z

Figure 5: Notations for the proof of Lemma 9.

PROOF. We only consider what happens when the inner sphere of A passes through

q and point x lies on the outer sphere of A (see Figure 5). Let y be the intersection

the inner sphere of A with the segment connecting x to the center z of A. Let c be the
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midpoint of the segment yq. Since the angle between the two vectors c − z and q − z

is equal to the angle between the vector q − y and the hyperplane H , we have

‖q − y‖
2r

=
d(q, H)− (R− r)

‖q − y‖

The bound on r follows immediately.

Using this technical lemma, we are now able to establish that ε-essential points

cannot be too far away from P , assuming ε is not too big.

Lemma 10 Given a polyhedron P with diameter D, there exists a constant µ such that

for ε < D, every ε-essential point is at distance µ or less to the polyhedron P .

PROOF. We first give a characterization of ε-essential points. Let Sd−1 = {v ∈

Rd | ‖v‖ = 1}. Given a face F of the polyhedron P , we associate to F the function

δF : Sd−1 → R which maps every unit vector v ∈ Sd−1 to

δF (v) = max{〈q − x, v〉 | ∀x ∈ cl(F ), ∀q ∈ P}.

Equivalently, δF (v) represents the distance between an extreme point in direction v on

P and an extreme point in direction −v on the closure of F . Note that δF is continous.

Given a set of faces F = {F1, . . . , Fk}, we introduce the map defined by

δF (v) =
1
k

k∑
i=1

δFi
(v).

It is continuous as a sum of continuous functions. Consider a point z which is the

center of an annulus A(z, ε) tangent to the set of faces F = {F1, . . . , Fk}. We prove

that z is non ε-essential iff there exists a unit vector v such that δF (v) = 0. Indeed,

δF (v) = 0 iff δFi
(v) = 0 for all i which happens iff the hyperplane supporting the
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convex hull of P and passing through an extreme point in direction v on P contains

all faces Fi. We have just shown that a point z is ε-essential iff δF (v) > 0 for all unit

vectors v. Since the map δF is continuous and defined on a compact set, it attains a

global minimum and this minimum is positive. We define

h =
1
2

min
F

min
v

δF (v),

where v ranges over all unit vectors and F ranges over all subset of faces tangent to an

annulus A(z, ε) whose center z is ε-essential. We have h > 0.

Recall that z is the center of an annulus A(z, ε) tangent to the set of faces F =

{F1, . . . , Fk}. Let xi be the tangency point on the closure of face Fi and vi = z−xi

‖z−xi‖ .

For every face F of the polyhedron, δF is uniformly continuous because defined on a

compact set. Thus, there exists αF > 0 such that

∠vivj

2
< αF =⇒ |δF (vi)− δF (vj)| < h.

We define α = minF αF over all faces F of the polyhedron. We now use the fact that

for z sufficiently far away from P , the angle between vi and vj can be made arbitrarily

small. Formally, let D be the diameter of P and let r be the distance of z to P . We

have sin ∠vivj

2 ≤ D
r and therefore

r >
D

sinα
=⇒ |δF (vi)− δF (vj)| < h, (1)

for every face F and 1 ≤ i, j ≤ k.

We are now ready to prove that for ε < D, every ε-essential point z is at distance

r ≤ max{D2

h , D
sin α} to P . Suppose for a contradiction that this is not the case. Equiva-

lently, suppose that the inner radius r of A(z, ε) satisfies r > max{D2

h , D
sin α}. Writing
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R for the outer radius of A(z, ε), we have

R + r > 2r >
2D2

h
>

2ε2

h
,

from which we deduce that

R− r =
ε2

R + r
<

h

2
.

Let vj be any of the k vectors v1, . . . , vk. By definition of h, we have δF (vj) > 2h

and therefore, at least one of the face Fi must satisfy δFi
(vj) > 2h. By Equation (1)

and since r > D
sin α , we deduce that δFi

(vi) > h. Let Hi the hyperplane through Fi

and normal to vi. The inequality δFi(vi) > h implies that there exists a point q ∈ P

such that d(q, Hi) ≥ h. Furthermore, ‖xi − q‖ ≤ D and R − r ≤ h
2 . Therefore, we

can apply Lemma 9 and get r ≤ D2

h , which leads to a contradiction.

Afterwards, B(P ) denotes the smallest ball containing the parallel body Pµ =

{x ∈ Rd | d(x, P ) < µ}. We have just proved that B(P ) contains the set of ε-essential

points for ε smaller than the diameter of P .

Definition 11 The essential ε-quasi k-medial axis, M̄k(P, ε), is the set of ε-essential

points lying on the i-dimensional strata of the ε-quasi k-medial axis for i ≤ d− k + 1.

We now prove that the i-dimensional stratum of the ε-quasi k-medial axis has an

i-dimensional volume bounded by a constant that does not depend on ε. For this, we

use a generalization of Crofton’s formula that can be found in Santaló [12] on page

245. Writing Mε for the i-dimensional stratum of the ε-quasi k-medial axis, we have

Voli(Mε) =
Od−i · · ·O1

Od · · ·Oi+1

∫
Mε∩H 6=∅

N(Mε ∩H) dH,
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where the integration is over all (d− i)-planes H having a non-empty intersection with

Mε, N(Mε ∩H) denotes the number of points of the intersection Mε ∩H and Oj is

the surface area of the j-dimensional unit sphere. The i-dimensional stratum Mε of

Mk(P, ε) can be decomposed in pieces, each piece being a subset of the intersection

Qε of d − i independent quadrics. Since a (d − i)-plane H is the intersection of

i independent hyperplanes, it follows that Qε ∩ H is the solution of a system of d

polynomial equations of degree two or one. By the higher-dimensional version of

Bezout’s theorem [8], the number of roots of a system of d polynomial equations in d

variables is either infinite or the product of their degrees. It follows that the size of the

intersection Qε ∩H is either infinite or consists of at most 2d points. Furthermore, the

set of (d−i)-planes H for which Qε∩H is infinite has measure zero. Since the number

of pieces forming Mε can be bounded from above by a constant c(P ) that depends only

on the number of faces of P , it follows that for ε smaller than the diameter of P ,

Voli(Mε) ≤ 2dc(P )
Od−i · · ·O1

Od · · ·Oi+1

∫
B(P )∩H 6=∅

dH.

The integral on the right side is finite and represents the measure of all (d−i)-planes H

that intersect the convex set B(P ) (see [12] page 233 for an expression of this integral).

Hence, the right side of the above inequality does not depend on ε and we conclude

that:

Lemma 12 For ε smaller than the diameter of P , the i-dimensional stratum of the ε-

quasi k-medial axis has an i-dimensional volume bounded by a constant, that does not

depend on ε.
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4 Covering Delaunay spheres

The goal of this section is to prove that the intersection of a p-dimensional polyhedron

P with any Delaunay sphere Σ is contained in the cover of some point z on the essential

ε-quasi k-medial axis, for k = dd+1
p+1e. We first state crucial properties of Delaunay

spheres and polyhedra before defining the cover of a point. The first property is induced

by our sampling condition.

Definition 13 We say that a sphere Σ with center z is ε-almost P -empty if Σ ⊆

A(z, ε).

Lemma 14 Delaunay spheres are ε-almost P -empty.

PROOF. For reader’s convenience, we recall the proof given in [1]. Consider a De-

launay sphere Σ with center z. Let x be a point in P with minimum distance to z and

let s be the sample point in S ∩ cl(Fx) closest to x. Because of our sampling condi-

tion, ‖x − s‖ ≤ ε and therefore s ∈ A(z, ε). Because Σ encloses no sample point,

Σ ⊆ A(z, ε).

The second property concerns polyhedra.

Definition 15 We say that a polyhedron P is k-reductible if for any collection of k− 1

faces {F1, . . . , Fk−1} of P , there exists a hyperplane that contains the union
⋃k−1

i=1 Fi.

Note that every polyhedron P that is k-reductible is also k′-reductible with k′ ≤ k.

Lemma 16 Any p-dimensional polyhedron of Rd is dd+1
p+1e-reductible.
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PROOF. Let k = dd+1
p+1e. The dimension of the smallest affine space containing k − 1

faces of P is bounded from above by the amount of affinely independent points that

we can pick on each face minus 1. In other words, for any collection of k − 1 faces

{F1, . . . , Fk−1} of P

dim Aff(
k−1⋃
i=1

Fi) ≤ (k − 1)(p + 1)− 1

< (d + 1)− 1.

The claim follows.

We now define the cover of a point z ∈ Rd. Writing πx(z) for the orthogonal

projection of z onto the tangent plane of x ∈ P , we say that x is a critical point of the

distance-to-z function if πx(z) = x. We define χ(z, ε) as the set of critical points lying

in P ∩ A(z, ε). Note that χ(z, ε) contains the tangency points of the annulus with the

polyhedron but possibly other points of P located in the interior of A(z, ε). Given a

map w : P → R+ that associates to each point x ∈ P a positive real number w(x), we

define the cover of z as:

Coverw(z, ε) =
⋃

x∈χ(z,ε)

B(x, w(x)ε),

Given a Delaunay sphere Σ, we show that it is possible to find a point z on the essential

ε-quasi k-medial axis and a map w bounded from above by a constant in a such a way

that P ∩Σ ⊆ Coverw(z, ε). We prepare our result with a technical lemma, which says

roughly that any point in P ∩ A(z, ε) must be close to a critical point in χ(z, ε). We

then proceed in two steps, first finding a point in Mk(P, ε) and next in M̄k(P, ε).
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Lemma 17 For every point x ∈ P ∩ A(z, ε), there exists a point y ∈ χ(z, ε) in the

closure of the face to which x belongs and such that

‖x− y‖ ≤ (dim Fx − dim Fy + 1) ε.

qyxFx

A(z, ε)

F4

z

F0

F1

F2

F3

Figure 6: The annulus is tangent to the four faces F0, F1, F2 and F3. Notations for the proof of

Lemma 17.

PROOF. The proof is by induction over the dimension dx = dim Fx of the face Fx

containing x. If dx = 0, the result holds for y = x. Suppose dx > 0 and let q = πx(z)

be the orthogonal projection of z onto the tangent plane to Fx. We distinguish two

cases: (1) if q ∈ Fx, the segment xq lies inside A(z, ε) and therefore ‖x − q‖ ≤ ε ;

(2) if q 6∈ Fx, we consider the point y ∈ P on the segment xq, which is closest to x

and does not have the same tangent plane as x (see Figure 6). Since the segment xy

is contained in A(z, ε), this implies ‖x − y‖ ≤ ε. Furthermore, since y belongs to

the boundary of the face to which x belongs, dy < dx. Therefore, we can apply our

induction hypothesis to y and conclude.
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Lemma 18 Consider a k-reductible polyhedron P that spans Rd and let wk(x) =

dim P − dim Fx + 2k. For every ε-almost P -empty sphere Σ, there exists a point

z ∈Mk(P, ε) such that

Σ ∩ P ⊆ Coverwk(z, ε).

PROOF. For simplicity, we write dx = dim Fx. The proof is by induction over k. For

k = 1, let z1 be the center of Σ. The inner sphere of the annulus A(z1, ε) is tangent

to the polyhedron in at least one point, showing that z1 ∈ M1(P, ε). Furthermore,

b ⊆ A(z1, ε) and by Lemma 17, this implies that b∩P ⊆ Coverw1(z1, ε). Suppose the

statement holds for k = i and let us prove it for k = i + 1. By induction hypothesis,

there exists a point z ∈ Mi(P, ε) such that b ∩ P ⊆ Coverwi(z, ε). This means in

particular that we can find i faces F1, . . . , Fi, each either tangent to the inner sphere

of A(z, ε) or to the outer sphere of A(z, ε). Since P is i-reductible, we can find a

hyperplane H that contains
⋃i

j=1 Fj . Let L+ be the half-line with origin z, orthogonal

to H and avoiding H . Keeping the intersection H ∩A(z, ε) fixed, we move the center

z on L+ until either the inner sphere of A(z, ε) or the outer sphere A(z, ε) becomes

tangent to a new face. Let z′ be the point of L+ at which this happens. If z′ does not

exist, we repeat the search replacing L+ by the half-line with origin z, orthogonal to

H and intersecting H . In any case, the point z′ must exist because we assumed that no

hyperplane contains the polyhedron P . We have z′ ∈Mi+1(P, ε).

To establish the statement for k = i + 1, we only need to prove that for every

x ∈ χ(z, ε), there exists x′ ∈ χ(z′, ε) such that

‖x− x′‖ ≤ (dx − dx′ + 2)ε,
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which will entail that

Coverwi(z, ε) ⊆ Coverwi+1(z′, ε).

Let H+ be the closed half-space that H bounds and that contains points at infinity on

the half-line L+. Let H− be the complement of H+. We consider two cases:

1. If x ∈ H+, by construction, the annulus A(y, ε) remains P -empty as the center

y moves on the segment zz′. It follows that x cannot escape the annulus A(y, ε)

and therefore x ∈ A(z′, ε). By Lemma 17, there exists a point x′ ∈ χ(z′, ε)

such that ‖x− x′‖ ≤ (dx − dx′ + 1)ε.

2. If x ∈ H−, we consider the intersection Dy of A(y, ε) with the tangent plane

to the face containing x. Because x ∈ χ(z, ε), Dz is a dx-ball of radius less

than ε with center x. The restrictions of Dy to H− form a nested family of sets.

In particular, Dy ∩ H− ⊆ Dz ∩ H−, for all points y ∈ zz′. As the point y

moves on the segment zz′, the closure of the face F containing x cannot escape

Dy ∩ H−. Indeed, if it were the case, it would mean that y passed a point

at which the outer sphere of A(y, ε) becomes tangent to F or to a face on the

boundary of F , which is impossible unless y = z′. Therefore, we can always

find a point x′′ ∈ Dz ∩Dz′ ∩ cl(F ). Because Dz is a ball of radius less than ε

with center x, ‖x − x′′‖ ≤ ε. By Lemma 17, there exists a point x′ ∈ χ(z′, ε)

such that ‖x′′− x′‖ ≤ (dx′′ − dx′ + 1)ε. Combining these two inequalities with

dx′′ ≤ dx, we get ‖x− x′‖ ≤ (dx − dx′ + 2)ε.
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H+
Dz

Dy

Dz′

H−

H+

H−

Aff Fx

L+

H

H

z′

y

z

A(z, ε)

A(z′, ε)

x

x

A(y, ε)

Figure 7: On the upper left, three annuli centered at z, y and z′ that share the same intersection

with a hyperplane H . On the lower right, intersection of the three annuli with the tangent space

passing through x. The restriction of those intersections to H− are nested.

Lemma 19 Let P be a k-reductible polyhedron that spans Rd. For every point z ∈

Mk(P, ε), there exists a point z̄ ∈ M̄k(P, ε) such that

Coverwk(z, ε) ⊆ Coverwk+d(z̄, ε).

PROOF. The proof is omitted. The intuition is that after at most d steps similar to

those described in the previous Lemma, we are able to find a point z̄ which is the

center of an annulus tangent to a set of faces that span Rd and amongst which k faces

are independent. Furthermore, the cover of z weighted by wk is contained in the cover

of z̄ weighted by wk+d. By Corollary 6 and Lemma 8, z̄ belongs to the essential ε-quasi
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k-medial axis.

We combine Lemma 18 and Lemma 19 and get the following lemma:

Lemma 20 Consider a k-reductible polyhedron P that spans Rd. For every ε-almost

P -empty sphere Σ, there exists a point z ∈ M̄k(P, ε) such that

Σ ∩ P ⊆ Cover4d+1(z, ε).

In the next section, it will be convenient to use a slightly different notion of cover.

Let Π(z) be the set of orthogonal projections of z onto the planes supporting faces of

P . We define the extended cover of point z as

ExtendedCoverw(z, ε) =
⋃

x∈Π(z)

B(x, w(x)ε).

Lemma 21 For every points z and z′ with ‖z − z′‖ ≤ ε:

Coverw(z, ε) ⊆ ExtendedCoverw+1(z′, ε).

PROOF. Recalling that πx(z) is the orthogonal projection of z onto the tangent plane

to P at x, we have ‖πx(z)− πx(z′)‖ ≤ ‖z− z′‖ ≤ ε. The claim follows immediately.

5 Size of Delaunay triangulation

In this section, we collect results from previous sections and establish our upper bound

on the number of Delaunay simplices. We then prove that our bound is tight. We recall

that the number of points in a λ-sparse ε-sample S of a p-dimensional polyhedron P is

n = Θ(ε−p) and that the i-faces of P have Θ(ε−i) points of S [1].
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5.1 Upper bound

Without loss of generality, we may assume Aff(P ) = Rd. An ε-sample of the essential

ε-quasi k-medial axis is a subset M ⊆ M̄k(P, ε) such that every point x ∈ M̄k(P, ε)

is at distance no more than ε to a point z ∈ M , ‖x − z‖ ≤ ε. We claim that we can

construct an ε-sample M of M̄k(P, ε) in such a way that the i-dimensional stratum

of the essential ε-quasi k-medial axis receives O(ε−i) points of M and the number of

points in M is m = O(ε−(d−k+1)). This is a consequence of Lemma 12 which says

that the i-dimensional volume of the i-dimensional stratum of M̄k(P, ε) is bounded

by a constant that does not depend on ε. To establish our upper bound, we map each

Delaunay simplex σ ∈ Del(S) to a point z ∈ M . Consider a Delaunay sphere Σ

passing through the vertices of σ. By Lemma 14, Delaunay spheres are ε-almost P -

empty. We can therefore combine Lemma 16, Lemma 20 and Lemma 21 and get that

for d ≥ 2 and k = dd+1
p+1e , there exists a point z ∈ M such that

Σ ∩ P ⊆ ExtendedCover5d(z, ε)

The extended cover of z is a union of d-balls of radius 5dε, one for each face of the

polyhedron and therefore, it contains a constant number of points of S. It follows that

the number of simplices that we can form by picking points in the extended cover of z

is constant. Hence, each point z ∈ M is charged with a constant number of Delaunay

simplices and using n = Ω(ε−p), we get that the number of Delaunay simplices is

O(m) = O(ε−(d−k+1)) = O(n
d−k+1

p ),

where k = dd+1
p+1e.
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5.2 The bound is tight

We now prove that our upper bound is tight. Consider a set of d+1 affinely independent

points that we partition into k = dd+1
p+1e groups Q1, . . . , Qk in such a way that (1) no

group Qi has more than p + 1 points; (2) at least one of the group has p + 1 points.

Writing qi for the dimension of the affine space spanned by Qi, we have

k∑
i=1

qi = d− k + 1. (2)

Letting Ci be the convex hull of Qi, we consider the polyhedron P =
⋃k

i=1 Ci and S a

λ-sparse ε-sample of P . The simplex σ = {s1, . . . , sk} obtained by picking a sample

point si ∈ S ∩ Ci for 1 ≤ i ≤ k belongs to the Delaunay triangulation. Indeed, since

the points s1, . . . , sk are affinely independent, there exists a (d − 1)-sphere Σ tangent

to P at si for 1 ≤ i ≤ k, whose center lies on the 0-quasi k-medial axis of P . By

construction, this sphere encloses no sample point of S in its interior, showing that σ is

a Delaunay simplex. Since Ci contains Ω(ε−qi) points of S, the amount of Delaunay

simplices that we can construct this way is at least

Ω(ε−q1 × · · · × ε−qk) = Ω(ε−(d−k+1)) = Ω(n
d−k+1

p ).

6 Conclusion

This paper answers only the first of many possible questions about the complexity of

the Delaunay triangulations of points distributed nearly uniformly on manifolds. Sim-

ilar bounds for smooth surfaces rather than polyhedra would be of more practical in-

terest. The proof in this paper seems to relay on some properties specific to polyhedra,
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particularly that sample points on k faces are needed to form a simplex. On the other

hand, the tight bound seems to be “right”, at least in the sense that it agrees with the

well-known bounds in the cases p = 1 and p = d.
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