
Real-Time Parallel Hashing on the GPU

Dan A. Alcantara Andrei Sharf Fatemeh Abbasinejad Shubhabrata Sengupta Michael Mitzenmacher?

John D. Owens
University of California, Davis

Nina Amenta
?Harvard University

Figure 1: Overview of our construction for a voxelized Lucy model, colored by mapping x, y, and z coordinates to red, green, and blue
respectively (far left). The 3.5 million voxels (left) are input as 32-bit keys and placed into buckets of ≤ 512 items, averaging 409 each
(center). Each bucket then builds a cuckoo hash with three sub-tables and stores them in a larger structure with 5 million entries (right).
Close-ups follow the progress of a single bucket, showing the keys allocated to it (center; the bucket is linear and wraps around left to right)
and each of its completed cuckoo sub-tables (right). Finding any key requires checking only three possible locations.

Abstract

We demonstrate an efficient data-parallel algorithm for building
large hash tables of millions of elements in real-time. We consider
two parallel algorithms for the construction: a classical sparse per-
fect hashing approach, and cuckoo hashing, which packs elements
densely by allowing an element to be stored in one of multiple pos-
sible locations. Our construction is a hybrid approach that uses both
algorithms. We measure the construction time, access time, and
memory usage of our implementations and demonstrate real-time
performance on large datasets: for 5 million key-value pairs, we
construct a hash table in 35.7 ms using 1.42 times as much mem-
ory as the input data itself, and we can access all the elements in
that hash table in 15.3 ms. For comparison, sorting the same data
requires 36.6 ms, but accessing all the elements via binary search
requires 79.5 ms. Furthermore, we show how our hashing methods
can be applied to two graphics applications: 3D surface intersection
for moving data and geometric hashing for image matching.

Keywords: GPU computing, hash tables, cuckoo hashing, parallel
hash tables, parallel data structures

1 Introduction

The advent of programmable graphics hardware allows highly par-
allel graphics processors (GPUs) to compute and use data repre-
sentations that diverge from the traditional list of triangles. For
instance, researchers have recently demonstrated efficient parallel
constructions for hierarchical spatial data structures such as k-d

trees [Zhou et al. 2008b] and octrees [DeCoro and Tatarchuk 2007;
Sun et al. 2008; Zhou et al. 2008a]. In general, the problem of defin-
ing parallel-friendly data structures that can be efficiently created,
updated, and accessed is a significant research challenge [Lefohn
et al. 2006]. The toolbox of efficient data structures and their as-
sociated algorithms on scalar architectures like the CPU remains
significantly larger than on parallel architectures like the GPU.

In this paper we concentrate on the problem of implementing a
parallel-friendly data structure that allows efficient random access
of millions of elements and can be both constructed and accessed at
interactive rates. Such a data structure has numerous applications
in computer graphics, centered on applications that need to store
a sparse set of items in a dense representation. On the CPU, the
most common data structure for such a task is a hash table. How-
ever, the usual serial algorithms for building and accessing hash
tables— such as chaining, in which collisions are resolved by stor-
ing a linked list of items per bucket—do not translate naturally to
the highly parallel environment of the GPU, for three reasons:

Synchronization Algorithms for populating a traditional hash ta-
ble tend to involve sequential operations. Chaining, for in-
stance, requires multiple items to be added to each linked list,
which would require serialization of access to the list structure
on the GPU.

Variable work per access The number of probes required to look
up an item in typical sequential hash tables varies per query,
e.g. chaining, requires traversing the linked lists, which vary
in length. This would lead to inefficiency on the GPU, where
the SIMD cores force all threads to wait for the worst-case
number of probes.

Sparse storage A hash table by nature exhibits little locality in ei-
ther construction or access, so caching and computational hi-
erarchies have little ability to improve performance.

While common sequential hash table constructions such as chain-
ing have expected constant look-up time, the lookup time for some
item in the table is Ω(lg lg n) with high probability. The influen-
tial work of Lefebvre and Hoppe [2006], among the first to use the
GPU to access a hash table, addressed the issue of variable lookup
time by using a perfect hash table. In this paper we define a perfect
hash table to be one in which an item can be accessed in worst-

case O(1) time (not to be confused with perfect hash functions,
which simultaneously store a set of keys into a table with no colli-
sions). Perfect hash tables in the past have been constructed on the
CPU, using inherently sequential algorithms, and then downloaded,
a cumbersome process that limits their application to static scenes.

Our major contribution in this work is a parallel, GPU-friendly hash
table design that allows construction as well as lookup at interactive
rates. We address the three problems above using hashing strate-
gies that are both new to the GPU. The first is the classical FKS
perfect hashing scheme [Fredman et al. 1984], which is simple and
fast but not space-efficient. The second is the recently developed
cuckoo hashing method [Pagh and Rodler 2001]. Cuckoo hash-
ing is a so-called “multiple-choice” perfect hashing algorithm that
achieves high occupancy at the cost of greater construction time.
Our solution is a novel hybrid of these two methods for which con-
struction and access times, in practice, grow linearly with the num-
ber of elements.

One big advantage of the hash table in sequential computing is that
it is an inherently dynamic data structure; deletions and insertions
have O(1) expected time. But it is often unnecessary to have a
dynamic data structure on the GPU: if any or all of the data items in
the hash table change at every step, we simply rebuild the table from
scratch. This is a heavyweight approach, but one congruent with a
parallel processor with massive, structured compute capability; it is
the approach we adopt here.

Hashing is, of course, not the only way to solve the problem of ran-
dom access to sparse data. Another possible solution is to represent
the sparse elements as a dense array. Construction requires sort-
ing these elements; lookup requires a binary search on the sorted
array. We compare our hashing scheme to a sorting scheme based
on the GPU radix sort of Satish et al. [2009], the current highest-
performing key-value sort on any commodity processor. Our hash-
based solution is comparable in construction time and superior in
lookup time, but uses, on the average, 40% more space. We also
compare our hash table performance to our own implementation of
the spatial hashing scheme of Lefebvre and Hoppe [2006]; lookup
times between the two are similar, while our construction times are
much shorter.

Hash tables with real-time construction and access times are useful
in a variety of applications that require sparse data. We exercise our
hashing scheme in two graphics applications: spatial hashing for in-
tersection detection of moving data, and geometric hashing for fea-
ture matching. We demonstrate that a spatial hash on a virtual 1283

grid can be constructed at each frame at around 27 fps. Geometric
hashing is a GP-GPU application requiring intensive random access
to a table of pairs of feature points. We demonstrate a performance
improvement over an implementation based on a sorted list.

2 Related Work

Related Work on Hashing As a fundamental data structure,
hash tables are a standard tool in computer graphics. Parallel hash-
ing has been studied from a theoretical perspective, mostly in the
early nineties [Matias and Vishkin 1990; Matias and Vishkin 1991;
Bast and Hagerup 1991; Gil and Matias 1991; Gil and Matias
1998]. While these approaches achieve impressive results (guar-
anteeing O(1) lookup time, O(lg lg n) parallel table construction
time, and O(n) size) the implicit constant factors, especially on
space, are unreasonable, and the constructions use features of the
theoretical PRAM model not available on actual GPUs. In sequen-
tial hashing, there has been terrific progress since the mid-nineties,
mostly centered around the study of “multiple-choice” hashing al-
gorithms. We review this work in Section 3, since we build on these

ideas.

Related Work in Applications We use our parallel hash table
construction in two applications on the GPU. The first is intersec-
tion detection using spatial hashing. The spatial hash representation
is useful in computations that only accesses the neighborhood of
the surface, e.g. the surface reconstruction method of Curless and
Levoy [1996] or the narrow-band level-set method [Adalsteinsson
and Sethian 1995]. Lefebvre and Hoppe [2006] advocated the use
of spatial hashing as a surface representation on the GPU, an ap-
proach that has recently been adopted by others as well [Zhou et al.
2008c; Nehab and Hoppe 2007; Bastos and Celes 2008; Qin et al.
2008].

A second classic application of hash tables in graphics and com-
puter vision is matching. Geometric hashing [Lamdan et al. 1988;
Lamdan and Wolfson 1988; Lamdan et al. 1990] is the most basic
of this family of techniques, which also includes the generalized
Hough transform. It has been applied to a variety of matching sce-
narios over the years, including medical imaging [Guéziec et al.
1997], image mosaicking [Bhosle et al. 2002], fingerprint match-
ing [Germain et al. 1997], repair of CAD models [Barequet 1997],
mesh alignment and retrieval [Gal and Cohen-Or 2006], protein se-
quence matching [Nussinov and Wolfson 1991], and the construc-
tion of collages [Kim and Pellacini 2002]. Given a parallel hash
table implementation, geometric hashing is highly parallelizable.

3 Background and our Approach

3.1 Perfect Hashing

Like prior work on GPU hash tables, we concentrate on perfect hash
table constructions. The classic perfect hash table construction of
Fredman et al. [1984] (the “FKS” construction) relies on the obser-
vation that if the size of the table, m, is much larger than the number
of items n, specifically m = Θ(n2), then with some constant prob-
ability a randomly chosen hash function will have no collisions at
all, giving constant lookup time. To obtain constant lookup time
with linear space, the FKS construction uses a two-level table. The
top level hashes the items into buckets, and the bottom level hashes
a bucket of k items into a buffer of size O(k2). As long as each
bucket has only O(1) expected items, the expected size of the hash
table is O(n) and the time to find each item O(1). The main draw-
back is that to achieve reasonable table occupancy, say 1/4, requires
many very small buckets.

Much subsequent work focused on constructing minimal perfect
hash tables, which store n items in exactly n locations. Minimal
or even near-minimal perfect hash tables reduce the space overhead
at the cost of increased construction time. The spatial hash table
construction used by Lefebvre and Hoppe [2006] was based on one
of these approaches [Fox et al. 1992]. Such constructions are not
only expensive, but they seem to be inherently sequential, since
the location of an item depends on the locations already taken by
earlier items. The FKS construction, on the other hand, is purely
random and straightforward to implement in parallel; theoretically
it requires O(lg n) time on a CRCW PRAM [Matias and Vishkin
1990].

3.2 Multiple-choice Hashing and Cuckoo Hashing

The key result behind multiple-choice hashing was presented in
a seminal work by Azar et al. [2000], who considered the usual
chaining construction and showed that using d > 2 hash func-
tions and storing an item into the bucket containing the smallest
number of items reduces the expected size of the longest list from

O(log n/ log log n) to O(log log n/ log d). Vöcking [2003] used
multiple sub-tables, each with its own hash function, and reduced
the expected size of the longest list to O(log log n/d).

Cuckoo hashing [Pagh and Rodler 2001; Devroye and Morin 2003]
places at most one item at each location in the hash table by al-
lowing items to be moved after their initial placement. As with
multiple-choice hashing, a small constant number d > 2 of hash
functions are used, and it is convenient to think of the d tables as
being split into sub-tables. The sequential construction algorithm
inserts items one by one. An item first checks its d buckets to see if
any of them are empty. (Here we assume each bucket can hold just
one item; in settings where buckets hold multiple items, we check if
any bucket has space.) If not, it “kicks out” one of the items, replac-
ing that item with itself. This explains the name of the algorithm:
in nature, the cuckoo chick kicks its step-siblings out of the nest.
The evicted item checks its other possible buckets, and recursively
kicks out an item if necessary, and so on. Although with an unfor-
tunate choice of hash functions this process might continue forever
without finding a location for every item, the probability of this is
provably small. As long as every item finds a location, lookups take
only constant time, as only d buckets must be checked.

For d = 2, the expected maximum number of steps required to in-
sert an item is O(lg n), but unfortunately we can only achieve an
occupancy of just less than one half. For d = 3, cuckoo hashing can
achieve about 90% occupancy [Fotakis et al. 2005], but the theoreti-
cal upper bounds on insertion time have proven much more difficult
for d > 3. A recent result shows that the expected maximum num-
ber of steps required to insert an item can be polylogarithmic for
sufficiently large d, and it is believed that the expectation is actu-
ally logarithmic; Frieze et al. [2009] have more background and
details.

3.3 Our Approach : Parallel Cuckoo Hashing

The main issue in parallelizing the cuckoo hashing algorithm is to
define the semantics of parallel updates correctly, making sure that
collisions between items are properly handled. We describe our al-
gorithm using three sub-tables (d = 3), each of size n(1 + γ)/3,
where γ is a suitably large constant. In the first iteration, we at-
tempt to store every item into the first sub-table, T1, by writing
each item into its position in the table simultaneously. Our seman-
tics require that exactly one write succeeds when collisions occur,
and that every thread should be able to tell which one succeeded.
We implement this by writing all items independently and then in-
voking a thread synchronization primitive, ensuring the contents of
the table don’t change while checking for success. Roughly 2n/3
of the items fail; these attempt to write themselves into T2 in the
second iteration. Those that fail proceed to T3. Finally, those that
fail in T3 return to T1, evict the item occupying the location they
want to occupy, and again try to write themselves into the now-
empty locations. The evicted items, and those items which failed to
find a location in T1, continue to T2. The iterations continue until
all items are stored, or until a maximum number of iterations occur,
in which case we decide that we have had an unfortunate choice of
hash functions and we restart the process. Although for d = 2 we
can adapt the proof for maximum expected insertion time for the
sequential algorithm to show that the maximum expected number
of iterations is O(lg n), it again appears much more difficult to get
a theoretical upper bound when d > 3. Nonetheless we find that
the number of iterations is reasonable in practice (see Section 5).

However, the parallel cuckoo hash would not be a good choice for
building a large hash table on a GPU, since each iteration would re-
quire shuffling items in global memory with global synchronization
at each iteration. But it is very useful for tables which can be com-

Algorithm 1 Basic hash table implementation
Phase 1: Distribute into buckets of size ≤ 512

1: compute number of buckets required
2: allocate output space and working buffers
3: for each k ∈ keys in parallel do
4: compute h(k) to determine bucket bk containing k
5: atomically increment count[bk], learning internal offset[k]
6: end for
7: perform prefix sum on count[] to determine start[]
8: for each key-value pair (k, v) in parallel do
9: store (k, v) in buffer at start[bk] + offset[k]

10: end for
Phase 2: Parallel cuckoo hash each bucket

1: for each bucket b in parallel, using one block per bucket do
2: build parallel cuckoo hash containing the items in b
3: write out tables T1, T2, T3 and hash functions g1, g2, g3

4: end for

puted in a small and fast on-chip memory. Thus we adopt a hybrid
method. As in the FKS scheme, we find a first-level hash function
to divide the items into smaller buckets. Within each bucket, we
then use parallel cuckoo hashing to place the items into three sub-
tables. Since the cuckoo hashing is performed entirely within the
on-chip memory, it is very fast in practice.

4 Implementation

In this section we describe our implementation, which uses
NVIDIA’s CUDA programming environment and targets GPUs that
feature atomic global memory operations.

4.1 Basic hash table

We assume the input is a set of n integer key-value pairs (items),
where all of the keys are unique. Our build process is summarized
in Algorithm 1, and consists of two phases. Phase 1 distributes the
items into buckets using a hash function h, shuffling the data so
that each bucket’s items are in a contiguous area of memory; this
improves memory access patterns for phase 2. Phase 2 then builds
a separate cuckoo hash table for each bucket in parallel using fast
shared memory, then writes out its tables to global memory into a
single array with the keys and values interleaved.

Phase 1 The main goal of the first phase is to distribute the items
into a set of buckets each containing at most 512 items; this limit
allows each thread to manage at most one item and keeps each
bucket’s cuckoo table small enough to fit in shared memory. We
begin in Step 1 by estimating the number of buckets necessary. To
lower the risk of overfilling any buckets, the number of buckets is
set to dn/409e so that each is filled to 80% capacity on average.
This is based on our estimation of the binomial distribution for a
large number of keys using a Poisson distribution, which says that
the probability of a given bucket having more than 512 items is less
than one in a million (empirical numbers are shown in section 7).
We then allocate all memory required for both phases in Step 2.
The rearranged data will reside in a single buffer, with the items of
each bucket b beginning at index start[b].

In Steps 3–6, we launch a kernel assigning each item to a bucket
according to h. We set h(k) = k mod |buckets| for our first at-
tempt, based on the observation of Lefebvre and Hoppe [2006] that
even though it is not random it seems to work and improves local-
ity; there was a small, but noticeable, improvement in our retrieval

times. If needed, subsequent attempts set

h(k) = [(c0 + c1k) mod 1900813] mod |buckets|

where the ci are random integers and 1900813 is a prime number.

Each key k computes h(k) to determine the bucket bk that it falls
in. Next, we simultaneously count the number of items that fall into
each bucket, and compute an offset into the bucket where each item
will be stored. The count[] array stores the size of each bucket,
with each k atomically incrementing count[bk]. The thread stores
the value before the increment as offset[k]; this will be the offset
at which k is stored in the area of memory allotted for bucket bk.
Although these atomic increments are serialized, we expect at most
512 of them per counter regardless of the input size. If any bucket
is found to have more than 512 items in it, we pick a new h, and
repeat these steps.

In step 7, we determine the addresses of each item in the working
storage buffer that will hold the rearranged data. Using a prefix sum
operation from the CUDA Data Parallel Primitives library [Sen-
gupta et al. 2007], we compute the starting location for each bucket.
Finally, in step 8, a kernel copies the key-value pair (k, v) into
start[bk] + offset[k]. We interleave the key and value for each pair
in the array to take advantage of write coalescing.

Phase 2 Phase 2 works on each bucket b independently, using
a block of 512 threads to parallel-cuckoo-hash all items that fall
within b. This phase uses the shared memory extensively to build
the hash table. We seed the construction with pseudo-random num-
bers generated on the CPU for the hash functions g1, g2, g3, each
associated with a sub-table T1, T2, T3 and of the form

gi(k) = [(ci0 + ci1k) mod 1900813] mod |Ti|

All 6 constants cij are generated by XORing a single random num-
ber seed with different fixed numbers.

As described in Section 3.3, all threads begin by simultaneously
writing their keys into T1 using g1, disregarding any item already
in the slot. After synchronizing, each key checks whether it was
evicted, or failed to write, by comparing itself to the key occupying
its slot in T1. All unplaced keys perform the same operation again,
iteratively trying each sub-table in order until either all items place
themselves in the table or too many iterations (more than 25) are
taken. In the latter case, we assume that we have made an unlucky
choice of g1, g2, g3, and that a cycle of items prevents completion.
In this case we choose new hash functions for the bucket, and begin
again. Empirically, a bucket will loop through the sub-tables an
average of 5.5 times before succeeding. Only a few buckets fail to
build with the first hash functions, and these typically succeed after
restarting once.

The size of our tables at the second level is 3 × 192 = 576 for at
most 512 items; this is sufficient to ensure that up to 512 items can
be successfully hashed using three choices with sufficiently high
probability (based on CPU simulations, since the theoretical bounds
here are not at all tight). The overall load factor of our structure is
thus 409/576 ≈ 71%.

Finally, in step 3, we copy the completed hash table out to global
memory from shared memory, interleaving the values with their as-
sociated keys. The completed hash tables are written so that the T1

for all buckets are contiguous, followed by all of T2, then all of T3

(see Figure 1). This encourages parallel retrievals to concentrate on
the same area of memory rather than search across the entire array.
We also store the seed each bucket uses to create g1, g2, and g3.

5

c

a

b

e

d
b

a

k1 3

2

1

0

c

d
k2 e

21

0

0

25

Figure 2: Laying out the array of values for multi-value hashing.
Each key reserves space for its values by learning how many values
ck it has. Its values atomically increment ck, simultaneously giv-
ing them unique offsets ov within their key’s space (shown in red).
Space is then allotted by atomically adding each ck to a counter
tracking the number of currently reserved slots, returning the in-
dex ik where a key’s values should begin (blue). Values finally get
copied into the location ik + ov (right).

Retrieval Retrieval for a key k requires calculating bk using
h(k). The bucket’s seed is read to recreate g1, g2, g3, which are
then used to determine where k could be stored. The three lookups
are performed by the same thread, which stops looking as soon as
k is found.

4.2 Multi-value hashing

Many applications require adding the same key into the hash table
multiple times with different values. For example, in geometric
hashing (Section 6), we compute a collection of signatures from
an image, where a specific image signature can be found multiple
times in the same image. Using the signature as a key, we want to
store a list of the places in which it is found as the value.

Using the shared memory atomic operations available on NVIDIA
GPUs with compute capability 1.2, we can construct such a multi-
value hash table. Specifically, our parallel multi-value construction
produces a hash table in which a key k is associated with a count
ck of the number of values with key k, and an index ik into a data
table in which the values are stored in locations ik . . . ik + ck − 1.

Phase 1 of the construction algorithm proceeds similarly to the case
of the basic hash table, with all values sharing the same key di-
rected into the same bucket. While it is still likely that each bucket
contains at most 512 unique keys, the actual number of items may
now exceed 512. We handle this by allowing each thread to manage
more than one item in phase 2. Note that unlike for the basic hash
table, we cannot determine how many unique keys there are until
attempting to build the cuckoo tables.

Phase 2 begins with each thread attempting to write all of its keys
into T1, then synchronizing and checking which of its keys were
successfully stored. When multiple attempts are made to store the
same key, the key is defined to be stored if any one of them suc-
ceeds. The process then proceeds as before, cycling through each
sub-table. Repeated failure to build the cuckoo hash tables at this
point likely indicates an overfilling of the bucket, which causes a
complete restart from phase 1. Once cuckoo hashing has estab-
lished a place for every key k, we rearrange the values so that each
key’s data is contiguous. The process is analogous to the one fol-
lowed in phase 1, steps 3–10 of the basic algorithm, but uses shared
memory atomics in place of the global atomics and the prefix sum;
see Figure 2. Afterward, each k is associated with its ik and ck in
the cuckoo hash table, which then gets written to global memory.

30

40

50

60
GPU Hash: Construction
GPU Hash: Retrieval

Sorted array: Binary search
CPU PSH: Retrieval

0

10

20

0 0.5 1 1.5 2 2.5 3 3.5

Key-value pairs (millions)

Figure 3: Timings generated for increasingly larger voxelized rep-
resentations of the Lucy model. Note that our retrievals are consis-
tently faster than using a binary search, with our construction time
edging ahead of radix sort for the 3.5 million item case.

4.3 Compacting unique keys

Like sorting, hashing can be used to aggregate and compact data.
One typical scenario is first generating or selecting keys in parallel,
and then counting the number of unique keys created and compact-
ing them into an array. To accomplish this, we use a simplified
version of our multi-value hashing procedure that avoids additional
atomics. Everything proceeds the same until the cuckoo step is
completed, after which each key is associated with a value of one;
slots without keys receive values of zero. We write the cuckoo ta-
bles out to global memory and then perform a prefix sum on the
values, simultaneously producing a unique index for each key and
counting the number of unique keys. The keys are then compacted
into a new array using these unique indices.

Together, the array of unique keys and the hash table gives a mecha-
nism for translating between keys and their indices in constant time,
in both directions. We call this a two-way index. Of course, a two-
way index could also be constructed by compacting a sorted list of
keys. But while the sorted list version can also translate indices to
keys in constant time, translating keys to indices would require a
binary search.

5 Results

We compare the performance of our hash table against two other
methods: a binary search on a radix sorted array [Satish et al. 2009],
and an implementation of perfect spatial hashing (PSH) [Lefeb-
vre and Hoppe 2006]. Times are reported using CUDA 2.2 under
Ubuntu Linux for an EVGA GeForce GTX 280 SSC, with a core
clock speed of 648 MHz. Due to the inherent non-predictability of
GPU execution times and the randomness of our hash construction,
timings are averaged over 100 runs for all data points.

Our space-optimized implementation of PSH performs retrievals on
the GPU, but builds on the CPU. Binary search is used to find the
optimal size of the offset table, resulting in a typical space usage of
1.16n. This leads to construction times several orders of magnitude
slower than the other methods, which are omitted from our graphs.

Voxelized Lucy In Figure 3, we examine performance against
increasingly finer voxel representations of the Lucy dataset. Each
voxel is represented as 30 bits of a 32-bit integer, with the z-
coordinate taking the lowest 10 bits. We note that both radix sort
and our hash have very similar construction times, with hashing
nudging ahead of radix sort as the number of voxels increases.
However, this comes at the cost of increased storage for hash ta-

80

100

120

140

160

180
GPU Hash: Construction
GPU Hash: Retrieval

Sorted array: Binary search
CPU PSH: Retrieval

0

20

40

60

0 2 4 6 8 10

Key-value pairs (millions)

Figure 4: Timings generated for increasingly large sets of ran-
domly sampled voxels from a 10243 grid. Note that our hash build
times are comparable with a radix sort. For increasingly larger
datasets, our retrieval times remain on par with PSH retrievals
while the binary search gets worse; this reflects the smaller number
of trips to memory that a hash retrieval must perform.

bles. In no case does this overhead exceed 1.42n of input data,
arising from our 71% overall load.

Radix sort greatly reduces uncoalesced input/output by first sort-
ing in shared memory and then writing out data to global mem-
ory. While our hash algorithm reads data in a perfectly coalesced
fashion, the writes at both levels are highly uncoalesced. Our final
cuckoo tables could actually be written out in a coalesced manner,
by having each thread write out contiguous elements of the subta-
bles. However, we found that it was actually faster to write out only
the occupied entries uncoalesced.

Search times are compared by searching for all voxels in a random
order. A binary search is performed to find a key in the sorted array,
which takes log(n) steps on average. Looking up a key in a hash ta-
ble takes a constant number of steps and computation of three hash
functions, though it is uncoalesced (again due to the randomizing
nature of the hash function), while there exists a fair degree of co-
alescence in the initial steps of the binary search. As the number
of keys searched for increases, the constant cost of the hash table
lookup improves in comparison to the binary search. There is a
point around 300k items after which the combined time of our con-
struction and retrieval is shorter than combined time of the radix
sort and the binary search.

Randomized voxels Figure 4 shows the performance on random
voxels drawn from a 10243 grid, with each voxel represented as a
32-bit integer. We search for all the voxels in a randomized order.
We compare with PSH up to only 4 million items, as PSH’s con-
struction time becomes impractical beyond this point. Our retrieval
times are on par with PSH retrievals, which trades off our faster
construction time for our increased storage requirements. The bi-
nary search consistently does worse than our retrievals, while our
construction time is comparable to that of the radix sort, overtaking
it after 5 million items.

To investigate this behavior, we break down the cost of our hash
construction in Figure 5, which shows that most steps grow lin-
early with input size. There is an initial ramping up cost with the
bucket assignment performed in step 3, causing the construction to
be slower for cases under 5 million items, as seen in Figures 3 and
4. Afterward, its relative effect on the construction time lessens,
making the cuckoo hashing step the most expensive.

Multi-value hash We also analyzed the performance of our
multi-value hash on random sets of 1 million items, plotting the

15

20

25

30

Assigning keys to buckets and counting

Shuffling the points into the buckets

Determining bucket data locations

0

5

10

0 2 4 6 8 10

Key-value pairs (Millions)

Figure 5: Timing for various steps of the hash table construction
generated on random voxel data. Note that timings are roughly
linear for most stages.

30

40

50

60
Multi-value hash: Construction
Multi-value hash: Retrieval

0

10

20

1 10 100 1000

Average number of values per key (log scale)

Figure 6: Construction and retrieval times for the multi-value hash
as a function of the average number of values per key, shown with a
logarithmic x-axis. The data consisted of randomly sampled voxels
from a 10243 domain. The build times for high multiplicity repre-
sent the overhead incurred by the extra work incurred to organize
the key-value pairs within each bucket.

construction and retrieval times against the average number of val-
ues per key (Figure 6). One query is performed on each key for
each of its values. For comparison, we generate an equivalent data
structure utilizing a radix sort and compaction of the unique keys to
enable binary search. Retrieval performs a binary search over the
compacted keys, giving both the location of the key’s first value as
well as the number of values it has.

Although there is an overhead incurred by this version when each
key has only 1 value, construction time steeply drops as keys have
2 values on average. At this point, values with the same key end up
in the same bucket and have a simpler parallel cuckoo build, with
fewer iterations occurring due to the looser definition of “eviction”
(Section 4.2). Construction time increases after a key has 32 val-
ues on average, at which point the extra work and shared memory
atomics used in phase 2 (and to a much lesser extent, the global
memory atomics used in phase 1) become prohibitively expensive.
Our retrievals are competitive with binary searches up to this point;
it is an open problem to do better with higher multiplicities.

6 Applications

In order to evaluate our hash table constructions in practice, we
have implemented two classic geometric applications of hash ta-
bles. Prior work on both applications was described in Section 2.

Spatial hashing When placed in a voxel grid, a typical surface
occupies only a small fraction of the cells. Storing the data for
every voxel in the grid would then result in an extremely sparse

Figure 7: Our hash tables are built and queried every frame for
two animated point clouds (left), allowing interactive Boolean op-
erations between the two surfaces. Blue parts of one model repre-
sent voxels inside the other model, while green parts mark surface
intersections.

data structure. A more space-efficient approach would store only
the information on the occupied cells. Spatial hashing does this
using a hash table, which still allows voxel lookup in constant time;
failure to find a voxel implies that it does not contain any part of the
surface.

To intersect two surfaces, we look up each occupied voxel of one
surface to see if it is also occupied for the other surface. Because
we can build the hash table on the GPU, we can construct and in-
tersect the spatial hashes in real time. Furthermore, we can detect
which parts of a surface are inside or outside of the other surface
(see Figure 7). We first determine the inside-outside status of vox-
els near the intersection, then propagate this information along the
surface voxels to determine their status. This allows us to display
Boolean combinations of two animated surfaces in real-time, while
the user modifies the viewpoint interactively.

We upload two point clouds with normals, representing the two
models, to the GPU at each frame. For both models, we assign
a thread to each input point, perform any user-specified rotation
and translation, and then round the resulting coordinates to identify
the voxel containing the point. Since there are multiple points per
voxel, we use the compacting hash table as described in Section 4.3
to assign a unique index to each voxel; these indices point into an
array of information gathered for each voxel, including its current
status and normal.

The next step intersects the voxelized surface representations and
robustly finds voxels inside or outside of the other surface. A thread
for each occupied voxel x first checks which of its 6 neighboring
voxels are also occupied by looking in its surface’s hash table. It
then looks itself up in the other spatial hash. If the corresponding
voxel x′ on the other surface is also occupied, x is marked as an
intersection. After all intersections are marked, we examine their
unmarked neighbors to see which are likely inside or outside the
other surface. For a neighbor voxel y, we take the dot product
between the vector from x to y and the normal at x′. Intuitively,
this compares the tangent of one surface with the normal of the
other. Negative values show the surface is entering the other sur-
face towards y, while positive values indicate it is exiting. Because
the coarseness of the voxelization only allows approximation of the
tangent, we set two thresholds representing our confidence: y is ini-
tialized as inside if the dot product is below the first threshold and
outside if above the second. Let M be the set of these initialized
voxels.

We follow with a flood-fill kernel to propagate the inside-outside
status to the rest of the surface, again using one thread per occu-
pied voxel. Each unmarked voxel repeatedly checks the status of
its neighbors. If the voxel finds an inside or outside neighbor, it

Figure 8: Matching two photographs of a carved relief image from
Persepolis. The images differ in lighting, scale, and by a slight
rotation. Our entirely GPU geometric hashing algorithm aligns
them in 2.38 seconds; the same algorithm using sorted lists requires
2.86 seconds.

takes on that status, and also copies from that neighbor the ID of
the initialized voxel from M which initialized the chain of propa-
gation. The kernel iterates and is re-run until all threads stabilize,
indicating that no further propagations will occur.

As is typical with flood-filling, if the initialization was incorrect the
results might be wrong. We do a final check, using another kernel,
to see if any inside cell is a neighbor of an outside cell; if so the
initialized cells in M causing the conflict are cleared and the flood-
fill is restarted from the remaining cells of M . This has produced
good results in the examples we tried.

We normally use a 1283 voxel grid for point clouds of approxi-
mately 160k points, though we use a 2563 voxel grid for one of
the datasets in the accompanying video. We achieve frame rates
between 25–29 fps, with the actual computation of the intersection
and flood-fill requiring between 15–19 ms. Most of the time per
frame is devoted to actual rendering of the meshes.

Geometric hashing Geometric hashing is a well-known image
matching technique from computer vision, which tries to find a
query image within a reference image. A set of feature points is
chosen in both images, with pairs of different points called bases.
Bases from the two images form a match if, when the images are ro-
tated, translated and scaled so as to align the two bases, many other
feature points are aligned as well. Essentially, geometric hashing is
a brute-force search for matches that uses large hash tables to store
the accumulating information.

We begin by applying a Sobel edge detection filter to the reference
image. Pixels detected as edges (using a threshold) are marked, and
then compacted into a contiguous array R of k feature points. Any
basis ri, rj ∈ R defines a 2D coordinate system where a rescaled−−−→ri, rj forms the x-axis: ri is placed at the origin and rj is given a
fixed, positive x-coordinate. The coordinate system is quantized, so
that it assigns integer coordinates (u, v) of every other point p of
R, with all points within the same unit square receiving the same

coordinates. Note that any labeled triple of points in either image
that is similar (in the geometric sense) to (ri, rj , p) produces the
same code (u, v).

Any match between the sets of feature points will be represented
by multiple pairs of matching bases, so we need not consider all
k2 possible bases in each image. Instead, we take each pair of fea-
ture points ri, rj ∈ R as a basis with probability 1

5
(the constant

is somewhat arbitrary; we found that this choice did not degrade
quality and greatly reduced the size of the hash tables). We further
ignore bases for which the distance between ri and rj is very small
or very large, since the information they provide is not very salient:
the accompanying transformations would either spread the points
out too thinly or concentrate them into the same few (u, v) coordi-
nates. The n remaining bases are compiled into a two-way index by
using a compacting hash table (Section 4.3); this allows us to find
either the location of a given basis, or the basis at a given location,
in constant time.

Next, we compute all of the possible (u, v) pairs for the image.
Using one thread per basis, we iterate through the set R of feature
points. For each, we compute and store an item with key (u, v) and
the value (ri, rj) in a multi-value hash table (Section 4.2). Each of
these key-value pairs represents the image transformation causing
a feature point to appear at (u, v); notice that each key will likely
have many values.

We then similarly compute a set Q of feature points for the query
image, select m random bases from the points, and again build a
two-way index for the set of chosen bases using the compacting
hash table. Afterward, we assign a thread to each chosen basis
(qk, ql) from the query image and iterate through the points of Q.
For each point, we compute coordinates (u, v) with respect to the
basis and look them up in the multi-value hash table. If we find that
(u, v) is present as a key, we iterate through the set of bases from
the reference image stored as its value list, casting a vote for the cor-
respondence between (qk, ql) and each (ri, rj). Correspondences
with many votes are candidates for the transformation needed to
align the two images.

Since almost every pair of bases receives some votes, we store the
votes in an array T of size n × m in global memory. To address
the location for a vote in T , we need the index for (ri, rj) and the
index for (qk, ql), which we get using the two-way indexing hash
tables. Votes are then cast by performing an atomic addition on
the correct element in T . The atomic is required because multiple
threads can vote for the same basis pair, but contributes to making
this the most expensive step of the algorithm. After all votes have
been cast, we use a reduce operation on T to find the pair of bases
that received the most votes. If the number of votes is above a
threshold, we output the transformation aligning the two bases as a
possible correspondence between the reference and query images.

One aligned example is shown in Figure 8, with timings in Table 1.
The Table also shows average timings for matching each frame of a
video to an image, as well as comparisons between a hash table and
sorted list based approaches. Aligned images for these are shown
in our accompanying video. While geometric hashing successfully
reports the correct match as the best correspondence in these exam-
ples, it can fail to find a good match even when one exists if there
are regions where edge pixels are densely distributed (such regions
match any curve in the query image).

This application stresses the hash tables in ways different than for
spatial hashing. First, the multiplicity for the multi-value hash table
is highly variable: the Kremlin dataset has an average of 105 values
per key with a maximum of 5813, while for Figure 8 the average is
18 with a maximum of 947. Building the hash table for the query

in Figure 8 required 44 ms for 3.02 million items, roughly twice the
time required for the same number of unique random items.

The extra time required for construction is offset by our retrievals,
the number of which is much higher for both hash table types. For
a query image with k feature points, O(k3) queries are passed to
the multi-value hash for voting, with each vote needing to use the
two-way index to address into T . The advantage of the hash table
implementation over the sorted list implementation becomes more
prominent as the number of items increases.

Dataset # Items
Avg. Matching Time Per Frame (ms)

Hash Table Binary Search

Persepolis Images ∼3M 2377 2858
Matt Video—Kremlin ∼4M 3025 4969
Matt Video—Taj Mahal ∼440K 1437 1735
Matt Video—Easter Island ∼550K 1721 2095

Table 1: Times required to match an image to a pre-processed
query; most of the time is spent voting. The number of items re-
ported is the number of key-value pairs inserted into the multi-value
hash table. The time to build the data structures for the reference
image are three orders of magnitude smaller.

7 Limitations

While our work establishes that the hash table is a viable data struc-
ture on the GPU, we believe that there is much more work to be
done in this area.

Space usage As noted in section 4.1, we set the number of
unique keys falling within a bucket to 512, leading to an overall
load factor of 71%. While one limiting factor here is the amount
of shared memory available, it is still possible to allow more than
512 per bucket. Doing so allows tighter packing of the data while
maintaining a low restart probability. In preliminary experiments,
we found that increasing the number of items managed by a bucket
to 1024 allowed raising the overall load factor to 75%. This had a
minor effect on our retrieval timings, but did increase our construc-
tion times, reflecting the extra work for building the denser cuckoo
tables.

Related to this is the fixed cuckoo table size for all buckets. Regard-
less of the number of items contained within each bucket, the tables
must account for the maximum number of unique keys possible.
This is more problematic in our multi-value and compacting hash-
ing implementations, where higher multiplicities lead to sparser ta-
bles. Future work will explore dynamically sized tables to increase
the overall load factor. The trade-off is the extra bookkeeping that
must be done in both the construction and retrieval stages to deter-
mine where each bucket’s tables are stored in memory.

Restarts Empirically, we have seen buckets overfilled on 22 out
of 25000 trial runs (0.088%) for 1 million random items of the basic
hash table, with an increase of average construction time from 9.78
to 14.7 ms. For the 5 million item case, restarts occurred for 125
out of 25000 runs (0.5%), with an increase of time from 35.7 to
49.4 ms. It is possible to decrease restarts in the first phase by
lowering the number of average number of items per bucket, at the
expense of further space overhead. Alternatively, one could use
the power of multiple choices for this first phase to both improve
space utilization and reduce restarts. For example, one could allow
items to choose from the less loaded of two different buckets in
this first phase. While this would double the number of places to
check when performing retrievals (as both buckets would need to be

considered), it would lead to much tighter space usage and tighter
concentration of the maximum bucket load.

The penalty is higher for the other hash table types, as we can’t
know how many unique keys fall into any given bucket until the
cuckoo tables are built. If a bucket fails to build its tables, the whole
process must restart from Phase 1. However, the chance of this
happening decreases as multiplicity increases: because the amount
of buckets allocated is dependent on the total number of items and
not the number of unique keys, it becomes more difficult to overfill
a bucket.

Ordered retrievals Hash tables in general have problems with
locality; items that are logically sequential might be stored very far
apart. Thus hash tables are often not a good choice for retrieving
an ordered set of items. Parallel binary searches on an ordered set
of items are more branch-friendly and their reads can be coalesced
well on current hardware. As a rule of thumb, if the data is to be
accessed sequentially, a sorted list may be the better data structure,
while a hash table may be the better choice if the data is to be ac-
cessed randomly.

8 Conclusions

We have demonstrated that hash tables with millions of elements
can be successfully constructed and accessed on the GPU at inter-
active rates. Our hybrid hash table builds on modern ideas from
the theory of hashing. We see similar construction times, and bet-
ter lookup times, compared to the approach of representing sparse
data in an array using a state-of-the art sort. One of the most inter-
esting outcomes of our work is the tradeoff between construction
time, access time, and space requirements. The implementation we
describe here balances these three metrics, but applications that (for
example) only require infrequent updates, or that are not limited by
storage space, may choose to make different design decisions.

Different applications also require different hash table features.
The most efficient implementation of multiple-value hashing is not
necessarily going to be the most efficient implementation when
the multiple values can be aggregated (i.e. by counting or averag-
ing), and yet another implementation might be more efficient when
unique keys are guaranteed. A standard data structures library may
have to include all of these specialized variants, and perhaps others.

Acknowledgments Thanks to our funding agencies: the Na-
tional Science Foundation (awards 0541448, 0625744, 0635250,
and 0721491) and the SciDAC Institute for Ultrascale Visualiza-
tion, and to NVIDIA for equipment donations. Michael Mitzen-
macher was additionally supported by research grants from Cisco
and Google. S. Sengupta was supported by an NVIDIA Grad-
uate Fellowship. We additionally thank our data sources, in-
cluding Daniel Vlasic, the Stanford 3D Scanning Repository,
the CAVIAR project, and Matthew Harding (http://www.
wherethehellismatt.com/). We also thank Timothy Lee
for his help in the early stages of the project.

References

ADALSTEINSSON, D., AND SETHIAN, J. A. 1995. A fast level
set method for propagating interfaces. Journal of Computational
Physics 118, 2, 269–277.

AZAR, Y., BRODER, A. Z., KARLIN, A. R., AND UPFAL, E.
2000. Balanced allocations. SIAM Journal on Computing 29,
1 (Feb.), 180–200.

BAREQUET, G. 1997. Using geometric hashing to repair CAD
objects. IEEE Computational Science & Engineering 4, 4 (Oct./
Dec.), 22–28.

BAST, H., AND HAGERUP, T. 1991. Fast and reliable parallel
hashing. In ACM Symposium on Parallel Algorithms and Archi-
tectures, 50–61.

BASTOS, T., AND CELES, W. 2008. GPU-accelerated adaptively
sampled distance fields. In IEEE International Conference on
Shape Modeling and Applications, 171–178.

BHOSLE, U., CHAUDHURI, S., AND ROY, S. D. 2002. The use of
geometric hashing for automatic image mosaicing. In Proceed-
ings of the National Conference on Communication, 533–537.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images. In Proceedings of
SIGGRAPH 96, Computer Graphics Proceedings, Annual Con-
ference Series, 303–312.

DECORO, C., AND TATARCHUK, N. 2007. Real-time mesh simpli-
fication using the GPU. In Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games, 161–166.

DEVROYE, L., AND MORIN, P. 2003. Cuckoo hashing: Further
analysis. Information Processing Letters 86, 4, 215–219.

FOTAKIS, D., PAGH, R., SANDERS, P., AND SPIRAKIS, P. 2005.
Space efficient hash tables with worst case constant access time.
Theory of Computing Systems 38, 2, 229–248.

FOX, E. A., HEATH, L. S., CHEN, Q. F., AND DAOUD,
A. M. 1992. Practical minimal perfect hash functions for large
databases. Communications of the ACM 35, 1 (Jan.), 105–121.

FREDMAN, M. L., KOMLÓS, J., AND SZEMERÉDI, E. 1984. Stor-
ing a sparse table with O(1) worst case access time. Journal of
the ACM 31, 3 (July), 538–544.

FRIEZE, A., MITZENMACHER, M., AND MELSTED, P. 2009. An
analysis of random-walk cuckoo hashing. In submission.

GAL, R., AND COHEN-OR, D. 2006. Salient geometric features
for partial shape matching and similarity. ACM Transactions on
Graphics 25, 1 (July), 130–150.

GERMAIN, R. S., CALIFANO, A., AND COLVILLE, S. 1997.
Fingerprint matching using transformation parameter clustering.
IEEE Computational Science & Engineering 4, 4 (Oct./Dec.),
42–49.

GIL, J., AND MATIAS, Y. 1991. Fast hashing on a PRAM—
designing by expectation. In Proceedings of the Second Annual
ACM-SIAM Symposium on Discrete Algorithms, 271–280.

GIL, J., AND MATIAS, Y. 1998. Simple fast parallel hashing by
oblivious execution. SIAM Journal of Computing 27, 5, 1348–
1375.

GUÉZIEC, A. P., PENNEC, X., AND AYACHE, N. 1997. Medi-
cal image registration using geometric hashing. IEEE Computa-
tional Science & Engineering 4, 4 (Oct./Dec.), 29–41.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. ACM
Transactions on Graphics 21, 3 (July), 657–664.

LAMDAN, Y., AND WOLFSON, H. J. 1988. Geometric hashing: A
general and efficient model-based recognition scheme. In Second
International Conference on Computer Vision (ICCV), 238–249.

LAMDAN, Y., SCHWARTZ, J. T., AND WOLFSON, H. J. 1988.
On recognition of 3-D objects from 2-D images. In IEEE Inter-
national Conference on Robotics and Automation, vol. 3, 1407–
1413.

LAMDAN, Y., SCHWARTZ, J. T., AND WOLFSON, H. J. 1990.
Affine invariant model-based object recognition. IEEE Transac-
tions on Robotics and Automation 6, 5 (Oct.), 578–589.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing.
ACM Transactions on Graphics 25, 3 (July), 579–588.

LEFOHN, A. E., KNISS, J., STRZODKA, R., SENGUPTA, S., AND
OWENS, J. D. 2006. Glift: Generic, efficient, random-access
GPU data structures. ACM Transactions on Graphics 26, 1
(Jan.), 60–99.

MATIAS, Y., AND VISHKIN, U. 1990. On parallel hashing and
integer sorting. In Proceedings of the Seventeenth International
Colloquium on Automata, Languages and Programming, 729–
743.

MATIAS, Y., AND VISHKIN, U. 1991. Converting high probability
into nearly-constant time, with application to parallel hashing. In
ACM Symposium on the Theory of Computing (STOC), 307–316.

NEHAB, D., AND HOPPE, H. 2007. Texel programs for random-
access antialiased vector graphics. Tech. Rep. MSR-TR-2007-
95, Microsoft.

NUSSINOV, R., AND WOLFSON, H. J. 1991. Efficient detec-
tion of three-dimensional structural motifs in biological macro-
molecules by computer vision techniques. In Proceedings of the
National Academy of Sciences of the United States of America,
National Academy of Sciences, vol. 88, 10495–10499.

PAGH, R., AND RODLER, F. F. 2001. Cuckoo hashing. In 9th
Annual European Symposium on Algorithms, Springer, vol. 2161
of Lecture Notes in Computer Science, 121–133.

QIN, Z., MCCOOL, M. D., AND KAPLAN, C. 2008. Precise vector
textures for real-time 3D rendering. In Proceedings of the 2008
Symposium on Interactive 3D Graphics and Games, 199–206.

SATISH, N., HARRIS, M., AND GARLAND, M. 2009. Designing
efficient sorting algorithms for manycore GPUs. In Proceedings
of the 23rd IEEE International Parallel and Distributed Process-
ing Symposium.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for GPU computing. In Graphics Hard-
ware 2007, 97–106.

SUN, X., ZHOU, K., STOLLNITZ, E., SHI, J., AND GUO, B. 2008.
Interactive relighting of dynamic refractive objects. ACM Trans-
actions on Graphics 27, 3 (Aug.), 35:1–35:9.

VÖCKING, B. 2003. How asymmetry helps load balancing. Jour-
nal of the ACM 50, 4 (July), 568–589.

ZHOU, K., GONG, M., HUANG, X., AND GUO, B. 2008. Highly
parallel surface reconstruction. Tech. Rep. MSR-TR-2008-53,
Microsoft Research, 1 Apr.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
KD-tree construction on graphics hardware. ACM Transactions
on Graphics 27, 5 (Dec.), 126:1–126:11.

ZHOU, K., REN, Z., LIN, S., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Real-time smoke rendering using compensated ray
marching. ACM Transactions on Graphics 27, 3 (Aug.), 36:1–
36:12.

