
A Randomized Linear-time Majority Tree Algorithm

Nina Amenta∗ Frederick Clarke† Katherine St. John†

Abstract

We give a randomized linear-time algorithm for computing the
majority tree, a technique widely used for summarizing sets of
phylogenetic trees. We are implementing the algorithm as part
of an interactive visualization system for analyzing large sets of
trees.
(Keywords: phylogeny, majority consensus, visualization)

With the recent explosion in the amount of genomic
data available, and exponential increases in computing
power, biologists are now able to consider larger scale
problems in phylogeny, such as the construction of evo-
lutionary trees on hundreds or thousands of taxa, and ul-
timately of the entire “Tree of Life” which would include
millions of taxa. One difficulty is that most programs used
for phylogeny reconstruction [6, 7, 11] are based upon
heuristics for NP-hard optimization problems which gen-
erally output hundreds or thousands of likely candidates
for the optimal tree, instead of producing a single optimal
tree. This large volume of data is usually summarized
with a consensus tree.

A consensus tree, for a set of input trees, is a single tree
which includes features on which all or most of the in-
put trees agree. The simplest is thestrict consensus tree,
which includes only subtrees that appear in all of the in-
put trees. Themajority tree, or Ml tree, includes nodes
for exactly those subtrees which occur in more than half
of the input trees, or more generally in more than some
fraction l of the input trees (see Figure 1). Margush and
McMorris [9] showed that this set of bipartitions does in-
deed constitute a tree for any1/2 < l ≤ 1. McMorris,
Meronk and Neumann [10] called this family of trees the
Ml trees (e.g. theM1 tree is the strict consensus tree); we
shall call them all generically majority trees. While our
example is for rooted binary trees, this can also be applied
to non-binary and unrooted trees. The majority tree is in-
teresting for a much broader range of inputs than the strict
consensus tree (see [2],§6.2, for an excellent overview).

We have developed a randomized algorithm to compute
the majority tree of a set of input trees, where the expected

∗amenta@cs.ucdavis.edu . Computer Science Department,
University of California, Davis, CA 95616. Supported by an Alfred P.
Sloan Foundation Research Fellowship and NSF ITR DEB-0121651.

†fclarke72@aol.com , stjohn@lehman.cuny.edu . Math
& Computer Science, Lehman College– City University of New York,
Bronx, NY 10468. Supported by NSF ITR DEB-0121682.

running time is linear both in the numbert of treesand in
the numbern of taxa. Earlier algorithms were quadratic
in n, which is problematic for larger phylogenies. Our
O(tn) expected running time is optimal, since just read-
ing a set oft trees onn taxa requiresΩ(tn) time. The
expectation in the running time is over random choices
made during the course of the algorithm, independent of
the input; thus, on any input, the running time is linear
with high probability.

Having an algorithm which is efficient int is essen-
tial, and most earlier algorithms focus on this. Large
sets of trees arise given any kind of input data on the
taxa (e.g. gene sequence, gene order, character) and what-
ever optimization criterion is used to select the “best”
tree. The heuristic searches used for maximizing parsi-
mony often return large sets of trees with equal parsimony
scores. Maximum likelihood estimation, also computa-
tionally hard, generally produces trees with unique scores.
While technically one of these is the optimal tree, there
are many others for which the likelihood is only negligi-
bly sub-optimal. The output of the computation is again
more accurately represented by a consensus tree.

As the number of taxa which can be handled increases
into the thousands, having an algorithm which is linear
in n is also becoming important, especially for interactive
software. We were motivated to find an efficient algorithm
for the majority tree because we wanted to compute it on-
the-fly in an interactive visualization application [1]. Fig-
ure 2 shows a screen shot. The window on the left shows
a representation of the distribution of trees, where each
point corresponds to a tree. The user interactively selects
subsets of trees and, in response, the consensus tree of the
subset is computed on-the-fly and displayed. This pack-
age is built as a module within Mesquite [8], a framework
for phylogenetic computation by Wayne and David Mad-
dison. Our original version of the visualization system

s0 s1 s2 s3 s4 s0 s1 s2 s3 s4 s0 s1 s2 s3s4 s0 s1 s2 s3 s4

T1 T2 T3 Majority tree

Figure 1:Three rooted input trees and their majority tree (for a
50 percent majority). The input trees need not be binary.

1



Figure 2:The tree visualization module in Mesquite. The win-
dow on the left shows a projection of the distribution of trees.
The user interactively selects subsets of trees with the mouse,
and, in response, the consensus tree of the subset is computed
on-the-fly and displayed in the window on the right. Two se-
lected subsets and their majority trees are shown.

computed only strict consensus trees. We found in our
prototype implementation that a simpleO(tn2) algorithm
for the strict consensus tree was unacceptably slow, and
we implemented instead theO(tn) strict consensus algo-
rithm of Day [5]. This inspired our search for a linear-time
majority tree algorithm.

Prior Work: For the strict consensus tree, Day’s de-
terministic algorithm uses a cleverO(1) representation
for subtrees, and also achieves an optimalO(tn) running
time, which does not generalize easily to otherMl trees.
Wareham [12], developed anO(n2 + t2n) algorithm for
the Ml tree, which only usesO(n) space. It uses Day’s
data structure to test each subtree encountered against all
of the other input trees. Another algorithm for major-
ity trees is implemented in PHYLIP [6] by Felsensteinet
al.. The overall running time as implemented seems to be
O(tn2/(lg tn) + tn lg(tn) + n3/(lg tn)). Majority trees
are also computed by PAUP [11], using an unknown (to
us) algorithm.

Outline of Algorithm: A linear-time majority tree al-
gorithm has been somewhat elusive. Our algorithm has
two stages, similar to past algorithms. In the first stage,
we read through the input trees and count the occurrences
of each subtree, storing the counts in a hash table. Then,
in the second stage, we create nodes for the subtrees that
occur in a majority of input trees - themajority subtrees-
and “hook them” together into a tree. We sketch the algo-
rithm briefly below; more details and proofs will appear
in the full paper.

We achieve the linear running time by reducing the
space and time used for counting the common subtrees.
The natural bit-string representation for a subtree has size
O(n/w), wherew, the number of bits in a word, is usu-

ally taken to beO(lg tn). We introduce a representation
of sizeO((lg tn)/w), which givesO(1). The represen-
tation of a subtree is its constant-size hash code. We use
a specificuniversal hash functionfor which we can com-
pute the hash code for a node in constant time, given the
hash codes for its children, so that we can compute hash
codes bottom-up for all of theO(tn) subtrees inO(tn)
time.

We also give anO(tn) algorithm for hooking together
the majority nodes. Hooking together the nodes is no
longer trivial since we do not have explict representations
of the majority subtrees that occur in morelt trees. We
again traverse the set of input trees, keeping track of the
ancestor-descendant relationships of the majority subtrees
encountered. Ifp is the parent of a subtrees in the major-
ity tree, the Pigeonhole Principal implies that there is at
least one input tree in whichp is an ancestor ofs; we can
recognize it becausep will be the ancestor ofs of mini-
mum cardinality observed during the traversal.

The hash function is randomized, so there is a small
possibility that collisions in the hash table may cause the
algorithm to fail. We detect this event, and repeat the pro-
cess with new random choices. The expected number of
attempts at building the tree is less than two, so our ex-
pected running time is linear in both the number of trees
and the number of taxa.

Implementation Our majority tree algorithm is being
implemented within Mesquite [8], a framework for phy-
logenetic analysis written by Wayne and David Maddison.
Mesquite is designed to be portable and extensible. It is
written in Java and runs on a variety of operating systems
(Linux, MacIntosh OS 9 and X, and Windows). Mesquite
is made up of cooperating modules. The first version of
the module for our visualization system, TreeSetVisual-
ization, can be downloaded from our webpage [1]. The
module (including only the strict consensus) was intro-
duced this summer at Evolution 2002 and has since been
downloaded by hundreds of researchers. In the commu-
nications we get from users, majority trees are frequently
requested.

We are implementing the majority tree algorithm as
part of the next version. Figure 2 shows our current proto-
type. The speed of the majority tree function seems com-
parable to our linear-time strict consensus tree implemen-
tation; our final paper will give comparisons.

Acknowledgments: We thank Jeff Klingner for the tree
set visualization module and Wayne and David Maddison
for Mesquite, and for encouraging us to consider the ma-
jority tree.

2



References

[1] Nina Amenta and Jeff Klingner. Case study: Vi-
sualizing sets of evolutionary trees. In8th IEEE
Symposium on Information Visualization (InfoVis
2002), pages 71–74, 2002. Software available at
www.cs.utexas.edu/users/phylo/ .

[2] David Bryant. Hunting for trees, building trees and
comparing trees: theory and method in phylogenetic
analysis. PhD thesis, Dept. of Mathematics, Univer-
sity of Canterbury, 1997.

[3] J. Lawrence Carter and Mark N. Wegman. Universal
classes of hash functions.Journal of Computer and
Systems Sciences, 18(2):143–154, 1979.

[4] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT Press, Cambridge, MA,
second edition, 2001.

[5] William H.E. Day. Optimal algorithms for com-
paring trees with labeled leaves.J. Classification,
2(1):7–28, 1985.

[6] J. Felsenstein. Phylip (phylogeny inference pack-
age) version 3.6, 2002. Distributed by the author.
Department of Genetics, University of Washington,
Seattle. The consensus tree code is inconsense.c
and is co-authored by Hisashi Horino, Akiko Fuseki,
Sean Lamont and Andrew Keeffe.

[7] John P. Huelsenbeck and Fredrik Ronquist. Mr-
bayes: Bayesian inference of phylogeny, 2001.

[8] W.P. Maddison and D.R. Maddison. Mesquite:
a modular system for evolutionary analy-
sis. version 0.992, 2002. Available from
http://mesquiteproject.org .

[9] T. Margush and F.R. McMorris. Consensus n-
trees. Bulletin of Mathematical Biology, 43:239–
244, 1981.

[10] F.R. McMorris, D.B. Meronk, and D.A. Neumann.
A view of some consensus methods for trees. In
Numerical Taxonomy: Proceedings of the NATO
Advanced Study Institute on Numerical Taxonomy.
Springer-Verlag, 1983.

[11] D.L. Swofford. PAUP*. Phylogenetic Analysis
Using Parsimony (*and Other Methods). Version
4. Sinauer Associates, Sunderland, Massachusetts,
2002.

[12] H. Todd Wareham. An efficient algorithm for com-
putingMl consensus trees, 1985. BS honors thesis,
CS, Memorial University Newfoundland.

3


