LiDAR Point Cloud Analysis using 3D Shape Descriptors with Zernike Moments Stewart He, Nina Amenta Computer Science, University of California, Davis

This poster presents a method for tree classification using only shape information. Using a Zernike moment shape descriptor and a decision forest classifier we obtain an accuracy of up to 82%.

Figure 1: Example LiDAR taken from Panther Creek, Oregon. There was no color data available.

We used a forest of random decision trees. Each decision tree was trained on a randomized subset of the test data using a randomly chosen subset of features. The ratio of positive and negative examples was enforced for each decision tree.

75% of trees in the ground truth were Douglas Fir, which lead to a large imbalance between class sizes. We also experienced much better performance when only dealing with binary classifiers.

Test	Accuracy	F-measure	Precision	Recall
Coniferous vs Deciduous Total Accuracy:80.1%				
Coniferous	80.3	87.2	94.0	81.3
Deciduous	79.2	62.3	51.4	79.2
Douglas Fir vs Western Hemlock Total Accuracy:82.0%				
Douglas fir	81.6	89.7	98.7	82.3
Western Hemlock	86.8	44.0	29.5	86.8
4 Way Classifier Total Accuracy:58.8%				
Douglas Fir	58.0	72.5	94.6	58.8
Western Hemlock	60.0	29.1	19.2	60.0
Red Alder	62.0	51.1	43.6	61.8
Bigleaf Maple	60.0	34.9	24.6	60.0

Figure 2: When building a model shape descriptors are centered on trees using ground truth. Height bins are created, which are then projected down into 2D images.

Figure 3: Zernike Polynomials can decompose a 2D image into a series of complex numbers called Zernike Moments, like a Fourier Transform decomposes a signal. Zernike moments are rotationally invariant, but not scale or translation invariant. Our shape descriptor is a vector of 240 Zernike Moments.

Conclusions

We have demonstrated the effectiveness of a shape descriptor incorporating Zernike moments.

Future Work:

- Semi-supervised Learning
- Explore Boosting as a classifier and dimensional reduction
- Better model to account for failure cases and sub canopy trees

$$R_{n,m}(\rho) = \sum_{s=0}^{n-|m|/2} \frac{(-1)^s (n-s)! \rho^{n-2s}}{s! (\frac{n+|m|}{2}-s)! (\frac{n-|m|}{2}-s)!}$$
$$Z_{n,m}(\rho,\theta) = R_{n,m}(\rho) exp(im\theta)$$

Figure 4: Zernike polynomials are only defined for the unit circle. n, m are the order and repetition respectively and are determined by the pattern in Figure 3.

Bibliography

- 1. Zehra Shah, Stewart He, Peter Tittmann, Nina Amenta. "Analysis of Airborne Laser Scanning Data with Regional Shape Descriptors" *SilviLaser on,* pp.248,255, Nov 2013
- 2. Tin Kam Ho, "The random subspace method for constructing decision forests," *Pattern Analysis* and Machine Intelligence, IEEE Transactions on , vol.20, no.8, pp.832,844, Aug 1998
- 3. Khotanzad, A.; Yaw Hua Hong, "Invariant image recognition by Zernike moments," *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol.12, no.5, pp.489,497, May 1990
- Li, S.; Moon-Chuen Lee; Chi-Man Pun, "Complex Zernike Moments Features for Shape-Based Image Retrieval," Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol.39, no.1, pp.227,237, Jan. 2009