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This poster presents a method for tree classification using only shape ( ) - ':>/
information. Using a Zernike moment shape descriptor and a decision - — Y }® 1::>/
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We used a forest of random decision trees. Each decision tree was trained
on a randomized subset of the test data using a randomly chosen subset of
features. The ratio of positive and negative examples was enforced for each
decision tree.
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Figure 1. Example Lib
no color data available.

/5% of trees in the ground truth were Douglas Fir, which lead to a large
Imbalance between class sizes. We also experienced much better
performance when only dealing with binary classifiers.

Test Accuracy F-measure Precision Recall

Coniferous vs Deciduous Total Accuracy:80.1%

Coniferous 30.3 87.2 94.0 31.3
Deciduous 79.2 62.3 51.4 79.2
f Douglas Fir vs Western Hemlock Total Accuracy:82.0%
2 Douglas fir 81.6 89.7 08.7 82.3
4 Western Hemlock 86.8 44.0 29.5 36.8
2 4 Way Classifier Total Accuracy:58.8%
1 Douglas Fir 58.0 72.5 94.6 58.8
Western Hemlock 60.0 29.1 19.2 60.0
Figure 2: When building a model shape descriptors are centered on trees Red Alder 62.0 51 1 413 6 61.8
using ground truth. Height bins are created, which are then projected Bigleaf Maple 60.0 34 9 24 6 60.0

down into 2D images.

Conclusions

We have demonstrated the effectiveness of a shape descriptor
iIncorporating Zernike moments.

Future Work:

- Semi-supervised Learning

- Explore Boosting as a classifier and dimensional reduction

- Better model to account for failure cases and sub canopy trees

Figure 3: Zernike Polynomials can decompose a 2D image into a series of
complex numbers called Zernike Moments, like a Fourier Transform
decomposes a signal. Zernike moments are rotationally invariant, but not
scale or translation invariant. Our shape descriptor is a vector of 240
Zernike Moments.
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Figure 4: Zernike polynomials are only defined for the unit circle. 12, M are
the order and repetition respectively and are determined by the pattern in
Figure 3.
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