Finding a-helices in skeletons

Nina Amenta Sunghee Choi Maria E. Jump
Ravi Krishna Kolluri
Thomas Wahl

Technical Report TR-02-27

Computer Sciences Department
University of Texas at Austin '
Keywords: Crystallography, Computational Geometry, Object Recognition

October 16, 2002

Abstract

We consider a problem which is part of the process of determin-
ing the three-dimensional structure of a protein molecule using X-ray
crystallography: given an estimated map of the electron density of the
molecule as a function on three-dimensional space, we identify regions
which are likely to belong to a-helices. Our approach is to compute
a new kind of skeleton - the power shape - and then identify the heli-
cal substructures within the power shape with a variant of geometric
hashing.

1 Introduction

X-ray crystallography is one of the main techniques for determining three-
dimensional protein structure. Experimental diffraction data provides the
amplitudes of some of the Fourier coefficients of a three-dimensional map
of electron density in a crystal of the protein. The phases of the Fourier
coefficients are estimated using a variety of experimental and computational
techniques. When there is high-resolution diffraction data and the phases are
well-estimated, individual atoms are visible in the electron density map and
determining the three-dimensional structure is easy. Often, however, only a
noisy low-resolution map is available.
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At this point, a chemist will spend days or weeks at a computer graphics ter-
minal, manually aligning a stick-figure molecular model containing thousands
of atoms to the density map. Most of the really time consuming, difficult but
decipherable, maps are at between 3 and 4 Aresolution. Finding secondary
structures, especially the a-helices, is one of the first steps a human expert
takes when aligning the model with the map, and hence it is one of the first
steps we should attempt to automate.

Our work: Given a density map represented by a three-dimensional grid
of function values as input, we compute an isosurface. We then compute a
skeletal representation of the solid bounded by the isosurface, known as the
power shape, composed of triangles. For each triangle in the power shape,
we examine a set S’ of nearby power shape vertices and find the helix that
best agrees with S’ by geometric hashing. If there is sufficient agreement, we
report the points as part of a helix. Since there is a direct mapping between
the power shape and the isosurface, this corresponds to labeling a section of
isosurface as belonging to a helix, as in Figure 1.

We have tested the method successfully on two density maps, one at 3.0
Angstroms and the other at 3.5 Angstroms. At these resolutions a—helices
are visible as twisted shapes in the isosurface. See Figure 1.

Importance of the problem: There are at least three ways in which
automatically locating a-helices can be useful. First, it can be used as a
domain-specific visualization tool. Highlighting helical portions of the iso-
surface can make things easier for the chemist during manual model building.
Second, finding helices is used as part of a density map refinement algorithm.
Information about the three-dimensional structure of the molecule is used to
improve the estimated phases, thus improving the quality of the map itself.
Often reconstruction is an iterative process in which model building alter-
nates with phase improvement. This would be most useful for noisier, lower
resolutions maps than those we have considered so far, but our technique
might be applicable. Finally, it might be possible to combine automatic
geometric interpretation of the density map with AI methods for predict-
ing secondary structure from sequence data to automatically form tentative
matches of portions of sequence data to the map.

2 Related work

There is an excellent existing tool for finding structural fragments such as a—
helices in electron density maps. The most recent version of Kevin Cowtan’s
fffear program [19] can find helices in very low quality low resolution maps
(6-8 Angstroms, larger than a single turn of a helix). It searches a discrete
set, of possible orientations of the fragment. For each orientation, it convolves
the map with a filter resembling the fragment, by multiplication in the fre-
quency domain. This is quite efficient, and independent of the fragment size.
It takes advantage of the fact that the frequency domain representation is



Figure 1: The output of our algorithm on an electron density map of the yMTD
enzyme, courtesy of Prof. Jon Robertus (Chemistry, UT Austin). We succeed in
labeling vertices of the power shape belonging to each of the the a-helices, with
a few false positives. On the left, the power shape vertices which were labeled as
helical (purple), with the molecular backbone as reconstructed by the chemists,
helices highlighted in blue. Most of the purple points far from blue helices belong
to helices in other copies of the molecule nearby in the crystal. On the right,
parts of the isosurface corresponding to power shape vertices labeled as helical
are purple. The map is at 3.0 Aresolution with an R-factor of .28 (The R-factor
is a measure of the mismatch between the map and the constructed molecular
model; in this case, when the model is presumed to be good, it can be considered
a measure of noise in the map. An R-factor this low indicates a reasonably clean
map.)

already given (the density map is constructed from its frequency domain rep-
resentation). The spatial map of the filtered density is then computed (FFT)
and scanned for peak filter responses. Cowtan’s approach radically optimizes
an earlier exhaustive search algorithm due to Kleywegt and Jones [20]. While
still exhaustively searching all possible translations and orientations of the
helix, it speeds things up by avoiding a convolution for each orientation-
translation pair.

We approach the problem differently. Features (triangles) in the power shape
determine positions and orientations which are checked for matches with
the fragment. This cuts down the space of transformations examined, but
requires comparing the data with the fragment under every transformation
searched. In this paper we demonstrate that this approach can successfully
locate a-helices at moderate resolutions. It remains to be seen if it can do so
more efficiently than the frequency domain approach, in general or in some
significant subclass of problems.

Computation of isosurfaces and skeletonization are usual steps in the manual
map interpretation process. Existing programs, including 0 [6], MapMan [14]
and dm_skeletonization find one-dimensional skeletons using a voxel-based
thinning algorithm, proposed by Greer [5] in 1974. The skeleton is used to



help identify the main chain of the protein during manual model building.
A different skeletonization procedure was proposed by Leherte et al. [8, 9].
They construct a topological network on the set of critical points of the
map, resulting in a sparser 1D skeleton (ours is a denser 2D skeleton). They
have had some success in using this skeleton to identifying a-helices at 3
Aresolution (thus, comparable to this work), but it seems unlikely that it
would extend to much lower resolutions because the number of critical points
decreases with the map resolution.

There is some quite impressive work on the completely automatic determi-
nation of the entire 3D structure from diffraction data. The wARP system
of Perrakis et al. [10] has been successful with density maps in the 1-2.5
Angstrom range. Their approach is based on the ‘dummy atom’ method of
Lamzin and Wilson [7] for phase improvement. A different approach was
taken recently by Wang [11], who employs a branch-and-bound algorithm in
conformation space.

3 Skeletonization with the medial axis

We begin by describing the power shape construction. The power shape was
devised as an approximation of the medial axis of a three-dimensional solid,
a different kind of skeleton from that approximated by the one-dimensional
skeletons used in current systems. Medial axes are somewhat more expres-
sive, and might be of independent interest for visualization and other shape
analysis tasks.

Figure 2: On the left, the medial axis of an object is formed by the centers of
the maximal balls contained in the object. In three dimensions, the medial axis is
two-dimensional. On the right, the power shape approximates the medial axis by
the centers of a finite set of balls. In three dimensions the power shape is made
up of triangles.

The medial axis: Given a closed surface F', we say a ball B is empty (with
respect to F) if the interior of B contains no point of F. A medial ball is
a maximal empty ball; that is, it is not completely contained in any other
empty ball. The medial axis is defined as (the closure of ) the set of the centers
of the medial balls. In general, the medial axis of a three-dimensional solid
is a two-dimensional surface.



Given the medial axis and the radius of the maximal empty ball for ev-
ery point of the medial axis, the surface can be reconstructed perfectly. In
this sense the medial axis contains more information than a one-dimensional
skeleton could. For example, big side-chains like tryptophan usually show
up as flattened blobs in the isosurface at 3 A. The medial axis of such a
blob is roughly a disk, while the medial axis of a tubular region is closer to
a one-dimensional curve.

Power shape: Computing the exact medial axis of a three-dimensional
object is difficult. We approximate the medial axis - an infinite union of
balls - by a finite union of balls using the Voronoi diagram. To construct
the finite union of balls approximating the infinite set of medial balls, we
sample the surface and compute the Voronoi diagram of the sample set. We
select a set of vertices of the Voronoi diagram far from the sample set as
our approximate medial axis points. We discover the adjacencies of these
points using the power diagram, an kind of weighted Voronoi diagram. The
resulting polygonal structure is the power shape. A detailed description of
the construction, and an analysis of its quality as an approximation of the
medial axis, as a function of the quality of the sample set, can be found in
our papers [1], [2].

To sample an isosurface from a density map, we extract a set of vertices using
the marching cubes algorithm [15] as implemented in VIK [16]. We use the
vertices of the isosurface to compute the power shape. When the density map
is given on a sparse grid, marching cubes returns a sparse sample from the
isosurface and the resulting power shape is very rough. Choosing more sam-
ples from the isosurface, using a smooth interpolant of the marching cubes
vertices gives power shapes which do a much better job of approximating the
medial axis; see Figure 3.

Simplification of the power shape: Unfortunately, the medial axis tends
to be complicated-looking and unstable with respect to its input. Small
perturbations on the surface introduce large “spikes” in the medial axis. On
the other hand, portions of the medial axis induced by big shape features are
quite stable and give a good approximate description of the shape.

To isolate the stable portions, we define a noise threshold ¢, and define an un-
stable medial axis feature as one that might disappear if the surface were per-
turbed by €; note that such a perturbation might induce topological changes
in the object. The feature is in danger of disappearing if the points on the
surface to which it corresponds are within distance € of each other. To elim-
inate such features, we remove any ball which touches the surface at points
that are within distance €. The remaining balls may still be very redundant.
We therefore remove balls which are almost completely covered by other
balls, using a greedy algorithm, described in more detail elsewhere [1].

The net effect of this simplification process is to produce a two-dimensional
skeletonization which reflects only large shape features. In Figure 3, we
show the power shape of an isosurface for two different values of €, one which
merely removes quantization noise and another which eliminates many shape



Figure 3: Upper left, the power shape calculated from a dense set of points on the

smoothed isosurface (computed by applying two subdivision steps to the output of
the marching cubes algorithm), and simplified to remove quantization noise. This
power shape forms a good approximation of the medial axis of the (transparent
blue) isosurface. Upper right, the power shape we actually use, calculated directly
from the lower resolution marching cubes output. Lower left, removing parts of
the power shape of the smoothed isosurface (ie. upper left) corresponding to small
shape features leaves a skeleton very like the molecular backbone. Lower right,
one-dimensional ‘bones’ skeleton, computed with MapMan.

features, leaving only the largest.

4 Search procedure

Our algorithm for recognizing a-helices in the power shape is a variant of
geometric hashing [12]. Geometric hashing is a general technique for object
recognition in computer vision. We will review geometric hashing then ex-
plain the speed-ups we can achieve in this special case by using the power
shape.

Geometric hashing: The input to geometric hashing is a model M (eg. a
helix) and a scene S (eg. the power shape), both represented as sets of points,
and set of transformations 7" which might be applied to M. The output is
a matching of portions of the scene with the model. The algorithm consists
of a pre-processing phase, which only uses M, and a run-time query phase
comparing S and M. Multiple models can be considered simultaneously,
with little additional time required in the run-time query phase.

The crucial observation that makes geometric hashing work is that we can



express the coordinates of the points in the model M in a basis B defined
by a constant number of points of the model, so as to be invariant under the
set T' of transformations.

For instance, if 7' consists just of translations, it suffices to consider any point
p € M as the origin of the set B of basis vectors. In that simple case, we
match M to S as follows. Choose a point p in the model as the origin of
coordinate system given by B. Use the coordinates of each point of M, with
respect to B, as the index of an item in a hash table H. This completes the
pre-processing phase. In the query phase, for each point ¢ in .S, use ¢q as the
origin for a basis B. If ¢ is a point in the scene such that translating p to
q matches M with a subset of S, corresponding points in the scene and the
model will now have the same coordinates. We look up each point in S in
the hash table H; if it finds a corresponding point of M, we count one ‘vote’
for this translation. If the number of votes is equal to the number of points
in M, we conclude that is a match, and we output the translation.

To be useful in most settings, the requirements for a match have to be relaxed
somewhat to accommodate error. First, the points of M and S might not
match exactly. This is solved by rounding the coordinates used to index and
look up items in the hash table. It might be that some points of M are
not matched by points of S. In general this can be solved by requiring the
number of votes to be at least a fixed percentage of the number of points in
M. But if the point ¢ corresponding to the correct origin is missing from S
then the entire match is missed. This is solved by storing the coordinates of
the model points in M with respect to every origin p € M into the hash table.
Votes are counted separately for each choice of p; translations matching pairs
p € M,q € S which receive many votes are output. Note that although the
hash table gets larger, the number of hash-table lookups in the run-time
query phase remains the same.

Finally, there are some obvious optimizations. Using the relaxations de-
scribed in the previous paragraph, every transformation matching M to a
subset of .S will be found multiple times. Once a match is found, the corre-
sponding points of S can be eliminated from further consideration. Also, if
M is small (geometrically) with respect to S, only points of S near ¢ need
to be looked up in the hash table.

Our algorithm: In our case, we used 80 points distributed along a two-turn
segment of an ideal a-helix backbone as the model M and the vertices of the
power shape as the scene S, and the rigid motions (rotation and translation)
as the set T' of transformations. The preprocessing step involves building the
hash table H. For this set of transformations we need three non-collinear
points to define a reference frame. Given model points x1, zs, x3, we let z;
be the origin and define the three orthogonal basis axes by by the vectors



where n() represents normalization. Each non-collinear triple of points in the
first turn of our model helix is used to construct a basis and the coordinates
of all the points in M are expressed in this basis and stored in the hash table.
This preprocessing step needs to be done only once, for the particular helix
model. Note that since order matters, every three points need to be taken in
each of six permutations.

We use some observations about the structure of power shapes of helices
in density maps to speed up the run-time query phase. First, helices tend
to be dense, so that the parts of the power shape belonging to a helix are
contained in a single connected component of the power shape. And second,
because they are tightly wound, helices tend to contain rather large triangles
spanning curves or even entire turns of the helix.

In generic geometric hashing, all triples of power shape vertices are tried as
bases. But since only one triple from a particular helix in the scene has to
be chosen for the helix to be found, and any helix in the scene has many
triangles spanning three of its vertices, we limit our attention to triples of
points which form triangles in the power shape. The vertices of each triangle
only have to be considered in one order, since the basis according to each
permuation was used to create entries in the hash table. For each triangle,
we use the the connectivity of the power shape to select a subset S’ of the
power shape vertices in the neighborhood of the basis triangle. We perform a
breadth first traversal of the graph formed by the power shape edges, starting
at the basis triangle. We stop either when we have exhausted the connected
component or at most a constant number ¢ (we use ¢ = 200) of vertices have
been reached. We then look up only these ¢ points in the hash table H.

Finally, when a match is found, we try to label as many power shape vertices
as belonging to the helix as possible. When a basis is successful, meaning
that at least one model-basis pair receives many votes, we expand the set of
power shape vertices considered using another breadth-first search, and look
those up in the hash table as well.

This results in the following algorithm:

For each triangle ¢ in the powershape do:

1: Let B be the orthonormal basis defined by the vertices of ¢
2: Starting at the vertices of ¢ obtain the neighborhood

of t by breadth first traversal . This neighborhood forms S’ C S.
3: Compute the coordinates of all vertices in S’ with respect to basis B.
4: Look up each vertex in S’ in the hash table

and vote for (model,basis) pairs.
5: If the number of votes for a given (model,basis) pair

is above a threshold:
a: Label all vertices that voted for this transformation as part of a helix.
b: Expand the set S’ by breadth-first traversal and label as many new points as p



5 Results

The input files for the run-time query phase were power shapes for the yMTD
enzyme shown in Figure 1 and the barley chitinase shown in Figure 4, con-
taining respectively 14,692 and 80,542 vertices and 144,420 and 203,774 tri-
angles. We visually compared the sets of power shape vertices labeled as
belonging to helices with the models of the molecular backbones constructed
by the chemists, with the helicies on the backbone labeled by the DSSP al-
gorithm [13]. We found that some of the power shape vertices around each
of the helices in each molecule were labeled, except for a single-turn helix
in the chitinase molecule (a twist in the chitinase backbone is erroneously
labeled as helical by DSSP; our algorithm did not label any vertices in that
area). We also labeled a few ‘false positive’ regions near short curves in the
backbone. In the images, there appear to be many ‘false positives’. This
is because each density map contains parts of several molecules which are
near the central molecule in the crystal. Most of the labeled vertices which
do not appear to be near helices in the backbone are near helices in these
other copies of the molecule. About 35% of the vertices of the yMTD power
shape were labeled as belonging to helices and about 11% of the vertices in
the chitinase power shape.

The run-time query phase of the algorithm as described in the previous sec-
tion required about 2 hours and 15 minutes on the chitinase and about 2
hours for the yMTD. This large running time is mostly spent searching large
portions of the power shape that do not represent a helix.

Recall, however, that only one basis defining a match for the helix in the scene
must be found, and many bases are generally found for each helix, so it should
be possible to skip some candidate bases and still find every helix. A common
optimization in geometric hashing is to randomly choose a small subset of
bases to try. Here, we chose instead to heuristically eliminate triangles that
are very small (assuming that the tightly-wound helices almost universally
contain long triangles) and those that were numerically unsuitable as bases.
Using about 30% of the triangles in the chitinase power shape reduced the
running time to 40 minutes with no appreciable difference in the quality of
the output, as shown in Figure 4.

We also considered a different heuristic, eliminating triangles from consider-
ation if each of their vertices belonged to another triangle which had already
formed a basis. This reduced the running time even more, but seemed harder
to justify.

6 Discussion

There is a lot of potential here for further work. We have demonstrated that
a-shapes can be found in density maps at moderate resolution by examining a
skeletal representation. We are currently engaged in further experimentation
with this implementation, including randomly choosing bases, experiments



with noisier, poorly-phased maps, and a direct comparison with fffear.

In addition, there are interesting alternative implementations of both of the
two basic building blocks of this approach, skeletonization and discrete shape
matching. Geometric hashing is one of several techniques, including the
possibly more efficient random sample with consensus [18] and alignment
methods [17], for locating a model in a scene. ‘Bones’ skeletons might be
used instead of power shapes, and the very simplified power shapes from
smoothed isosurfaces (Figure 3, lower left) might be more sensitive than
the rough power shape we are currently using. Medial axis approximations
computed by voxel-based methods might also work well, and would probably
be faster to compute in this context.

7 Acknowledgments

We thank Prof. Leonides Guibas (CS Stanford) for suggesting that we explore
X-ray crystallography.

We are deeply grateful to Prof. Jon Robertus (UT Chemistry) for sharing
yMTD and barley chitinase density maps and his view of the model construc-
tion process, and to Jeff Almrud (UT Chemistry) for sharing many references
and insights into the state of the art in protein crystallography.

References

[1] N. Amenta, S. Choi and R. Kolluri. The power crust. Manuscript, 2001.
Available at http://www.cs.utexas.edu/users/amenta/powercrust.

[2] N. Amenta, S. Choi and R. Kolluri. The power crust, unions of balls,
and the medial axis transform. Submitted by invitation to Computa-
tional Geometry: Theory and Applications, special issue on surface re-
construction. http://www.cs.utexas.edu/users/amenta/pubs/

3] C. Bajaj, V. Pascucci, D. Schikore. Visualization of Scalar Topology for
Structural Enhancement Proceeding of the IEEE Visualization, (1998),
pp- 51-58.

[4] Blum, H., A transformation for extracting new descriptors of shape,
Models for the Perception of Speech and Visual Form (Walthen-Dunn,
W., ed.) MIT Press, 1967.

[5] J. Greer. Three-dimensional pattern recognition” an approach to auto-
mated interpretation of electron density maps of proteins. Journal of
Molecular Biology 82 (1974) pp. 279-301.

6] T.A. Jones, J.-Y. Zou, SSW. Cowen, and M. Kjeldgaard. Acta Crystel-
lographica A47(1991)pp.110-119.

[7] V.S. Lamzin and K.S. Wilson. Acta Crystellographica D 49 (1993) pp.
129-147.

10



8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

18]

[19]

[20]

L. Leherte, S. Fortier, J. Glasgow, and F. H. Allen. Molecular scene anal-
ysis: A topological approach to the automated interpretation of protein
electron density maps. Acta Crystallographica, D50:155-166, 1994.

L. Leherte, J. Glasgow, K. Baxter, E. Steeg, and S. Fortier. Analysis
of three-dimensional protein images. Journal of Artificial Intelligence
research, 7 (1997) pp. 125-159.

A. Perrakis, R. Morris, and V.S. Lamzin. Automated protein model
building combined with iterative structure refinement. Nature Structural
Biology, 6:5 (1999), pp. 458-463.

C. Wang. Determining molecular conformation from distance or density
data. PhD thesis, MIT, Feb, 2000.

Y. Lamdan and H. Wolfson. Geometric hashing: a general and efficient
model-based recognition scheme. In Proceedings ICCV ’88, pages 238—
249, 1988.

W. Kabsch and C. Sander. DSSP : Definition of secondary structure of
proteins given a set of 3D coordinates, Biopolymers 22 (1983) | pages
2577-2637

G.J. Kleywegt and T.A. Jones. Halloween ... Masks and Bones. In From
First Map to Final Model, edited by S. Bailey, R. Hubbard and D.
Waller. SERC Daresbury Laboratory, Warrington, pp. 59-66.

W.E. Lorensen and H.E. Cline. Marching Cubes: a high resolution 3D
surface reconstruction algorithm, Proc. of SIGGRAPH 87 (1987), pp
163-169.

W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit:
An Object-Oriented Approach To 3D Graphics, Prentice Hall, 1997.

D.P. Huttenlocher and S. Ullman. Recognizing Solid Objects by Align-
ment with an Image, Inter. Journ. Comp. Vision 5(2):195-212 (1990).

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Comm. Assoc. Comp. Mach., 24(6):381-395, (1981).

K. Cowtan. Modified phased translation functions and their application
to molecular fragment location, Acta Cryst. D54, (1998), pp. 750-756.

G. J. Kleywegt and T.A. Jones. Template convolution to enhance or de-

tect structural features in macromolecular electron-density maps, Acta
Cryst., D53, (1997) 179-185.

11



Figure 4: The output of the basic, and an optimized version of the algorithm, on a
density map for the barley chitinase protein. The power shape vertices labeled as
belonging to helices are shown, along with the molecular backbone as reconstructed
by the chemists with the helices hilighted. We fail to locate any helical points near
two short regions labeled as helical in the backbone; the one at the upper left
was not considered helical by the chemists either. Again, there are many points
distributed on helices on other copies of the molecule in the crystal, as well as
some false-positives near non-helical regions on the backbone. The input density
map was at 3.5 Aresolution.
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