
Blocked Randomized Incremental Constructions

Nina Amenta and Sunghee Choi †
Technical Report number TR-02-54

University of Texas at Austin

Abstract

Randomized incremental constructions are
widely used in computational geometry,
but they perform very badly on large data
because of their inherently random mem-
ory access patterns. We define an inser-
tion order which removes enough random-
ness to significantly improve performance,
but leaves enough randomness so that the
algorithms remain theoretically optimal.

1 Introduction

A look at recent textbooks [1, 2] shows that
randomized incremental algorithms are a
central part of computational geometry.
Many randomized incremental algorithms
construct geometric structures; one of par-
ticular importance is the randomized incre-
mental construction of the Delaunay trian-
gulation of a set of input points. The algo-
rithm is simple to state: insert the points
into the triangulation one by one in ran-
dom order, updating the triangulation at

†Computer Sciences Dept., Austin, TX 78712,
USA. Supported by an NSF CAREER award and
an Alfred P. Sloan Foundation Research Fellowship.
Contact: amenta,sunghee@cs.utexas.edu

0

each insertion. It is also worst-case op-
timal and (compared to the alternatives)
easy to implement robustly. This accounts
for its importance in practice; there are sev-
eral robust and efficient implementations
for 3D Delaunay triangulation, including
Clarkson’s hull, the CGAL Delaunay hi-
erarchy function, and Shewchuk’s pyramid.

Given these excellent programs for three-
dimensional Delaunay triangulation, it is
natural to want to apply them to the large
data sets which arise in applications such
as mesh generation or surface reconstruc-
tion. But the optimality of randomized
incremental algorithms is based on access-
ing the geometric data structures randomly,
and random access to large data structures
works very poorly with modern memory hi-
erarchies. Most virtual memory systems
cache recently used data in memory, on the
assumption of locality or reference, that is,
that recently used data is likely to be used
again soon. Randomized incremental pro-
grams violate this assumption, and soon af-
ter the data structure exceeds the size of
physical memory, thrashing occurs and the
program grinds (audibly!) to a halt [3].

A simple fix is to insert points in an or-
der which improves the locality of reference,
while preserving enough randomness to re-
tain the optimality of the algorithm. In sec-
tion 2 we present such an insertion order,
which we call blocked randomized. We prove
in sections 3, 4 that this order gives an op-
timal algorithm for 3D Delaunay triangula-

tion in the worst case, and also under less
severe but realistic assumptions about the
output complexity. Using a blocked ran-
domized ordering with pyramid and with
hull, we give experimental evidence in sec-
tion 5 that we can indeed solve much larger
problems using the blocked randomized or-
dering. We conclude in section 6 with a
discussion of when this analysis is applica-
ble, in particular to the trapezoidation of
sets of segments in the plane, and we point
out some directions for future work.

The development of randomized incre-
mental algorithms and their analysis was
a major project of computational geome-
try in the late eighties and early nineties,
as described in textbooks [1, 2] and sur-
veys [4, 5]. We touch on a few rele-
vant highlights. A classic paper by Clark-
son and Shor [6] showed that the random-
ized incremental paradigm could be ap-
plied to many problems, and gave a gen-
eral analysis. Mulmuley [7, 8] and Clark-
son, Mehlhorn and Seidel [10], among oth-
ers, extended this theory. Seidel [11], hark-
ing back to an an idea in an early paper of
Chew [13], popularized a simplifying idea
called backwards analysis. Unfortunately
we cannot see how to apply backwards anal-
ysis when using a blocked randomized in-
sertion order, so we build on results from
the earlier work, in particular the bounds
on ≤ k-sets from Clarkson and Shor, and
Mulmuley’s idea of probabilistic games. We
should also mention a nice paper by Dev-
illers and Guigue [18], similar in spirit to
this one, which analyzed the tradeoff be-
tween on-line and randomized insertion or-
der.

The traditional approach to thrashing is
to develop explicit out-of-core algorithms,
usually using divide-and-conquer. Unfor-
tunately the divide-and-conquer paradigm
seems to be much less practical than the
randomized incremental paradigm in com-
putational geometry; an exception is the
practical parallel 2D Delaunay triangula-

tion algorithm of Blelloch, Miller, and Tal-
mor [14]. Their approach, however, does
not immediately apply to either three-
dimensions or out-of-core computation.

2 The insertion order

We define a blocked randomized insertion
order for a set P of n input objects, which
we shall call points. We partition P arbi-
trarily into blocks; there can be any number
of blocks, and they may be of different sizes.

The insertion order of the n points is then
determined as follows. There are lg n + 1
phases, beginning with phase zero. In each
phase j, we visit all of the blocks in any ar-
bitrary order. Within each block, we visit
the uninserted points in the block in ran-
dom order, and select each uninserted point
for insertion with probability 2j/n. Since
we examine O(n) points in each of O(lg n)
phases, the total time spent determining
the insertion order is O(n lg n).

Of course in practice we choose a block-
ing scheme which improves locality of ref-
erence; blocks correspond to contiguous re-
gions of three-dimensional space, eg. the
cells of a kd-tree. We also visit the blocks
in an order chosen to improve locality of
reference.

The intuition is that in the early phases,
few if any points are inserted per block,
while in the last phase, all uninserted points
in a block are inserted in random order.
So the insertions in the early phases tend
to be sprinkled nearly randomly across all
the data, producing a nicely balanced data
structure, while in the later phases they
are clustered within blocks, accessing local
regions of the data structure mostly sepa-
rately.

3 Key Lemma

We analyze the use of a blocked inser-
tion order in the context of the incremental
construction of a three-dimensional Delau-
nay triangulation. There are O(n4) possi-
ble tetrahedra determined by choosing four
points of P as the vertices. Now consider an
incremental construction of the Delaunay
triangulation. Not every possible tetrahe-
dron appears as part of one of the interme-
diate triangulations, or in the final triangu-
lation. We begin our analysis by estimat-
ing the probability that a possible tetrahe-
dron does in fact appear during a run of the
blocked randomized incremental construc-
tion.

We will use some terminology due to
Mulmuley. Consider a tetrahedron τ with
four points in P as its vertices, known as
its triggers, and with s other points of P
contained in its circumsphere, known as its
stoppers. Tetrahedron τ appears in some
Delaunay triangulation if all of its triggers
are selected for insertion before any of its
stoppers. The probability that τ appears
during the construction thus depends on s;
if |s| = 0, for instance, τ belongs to the final
Delaunay triangulation and the probability
that it appears is one. It also depends on
the particular blocked randomized insertion
order, since the order in which triggers and
stoppers are considered for insertion is not
completely random.

Observation 1 The blocked randomized
insertion orders for which τ is most likely
to appear are those in which
1) the blocks containing the triggers are dis-
joint from the blocks containing the stop-
pers, and
2) in every phase, the blocks containing all
of the triggers precede the blocks containing
all of the stoppers in the iteration through
the blocks.

We upper-bound the probability that τ ap-

pears by assuming this worst case.

Tetrahedron τ appears in or before round
j if all triggers are chosen in or before round
j, and no stopper is chosen in or before
round (j − 1). We have:

Pr[trigger t chosen in or before round j] ≤
j∑

i=0

2i

n
≤ 2j+1

n

Hence

Pr[all four triggers chosen in or before round j] ≤
(

2j+1

n

)4

Meanwhile, for the stoppers:

Pr[no stopper chosen in or before round j−1] ≤

Pr[no stopper chosen in round j − 1] =
(

1− 2j−1

n

)s

Combining these two bounds, and using the
inequality

(
1− 1

r

)r ≤ (1/e),

Pr[τ present in round j] ≤
(

2j+1

n

)4 (
1− 2j−1

n

)s

≤
(

2j+1

n

)4 (
1
e

)s 2j−1

n

There are lg n + 1 rounds, so:

Pr[τ ever appears] ≤
lg n∑

j=0

(
2j+1

n

)4 (
1
e

) s
n

2j−1

=
(

4
s

)4 lg n∑

j=0

(
s

n
2j−1

)4 (
1
e

) s
n

2j−1

The main idea now is to bound this sum
with an integral. For convenience, let us
define

f(j) =
(

s

n
2j−1

)4 (
1
e

) s
n

2j−1

so that

Pr[τ ever appears] ≤
(

4
s

)4 lg n∑

j=0

f(j)

Now define
x =

s

n
2j−1

and
f(j) = g(x) = x4e−x

Then

dg/dx = 4x3e−x − x4e−x

Setting the derivative equal to zero, we find
a minimum of g(x) at x = 0 and a maxi-
mum of g(x) at x = 4. Since x is monotone
as a function of j, f(j) has a single maxi-
mum at

j = log n− log s + 3

at which f(j) = 44e−4. This value of j
is not in general an integer. So let M =
blog n−log s+3c, so that f(M+1) ≤ 44e−4.
We divide the summands into the mono-
tonically increasing part (sum from 0 to
M)and the monotonically decreasing part
(sum from M + 2 to log n).

lg n∑

j=0

f(j) ≤
M∑

j=0

f(j) +
lg n∑

j=M+2

f(j) + 44e−4

Now bounding the monotonic sums with in-
tegrals,

lg n∑

j=0

f(j) ≤

∫ M+1

j=0
f(j) dj +

∫ lg n

j=M+1
f(j) dj + 44e−4 ≤

∫ ∞

0
f(j) dj + 44e−4

We restate this in terms of x. Since

dx = (ln 2)
s

n
2j−1dj = x ln 2 dj

we get:

∫
f(j) dj =

∫ (
s

n
2j−1

)4 (
1
e

) s
n

2j−1

dj =

∫
(x4e−x)

dx

x ln 2
=

1
ln 2

∫
(x3e−x) dx (1)

Also, ∫ ∞

0
(x3e−x) dx = 6 (2)

So the probability that a tetrahedron τ
with s stoppers ever appears is at most

(
4
s

)4 1
ln 2

∫ ∞

0
x3e−x dx + 44e−4 (by 1)

≤
(

4
s

)4 (
1

ln 2
6 + 44e−4

)
(by 2)

= O

(
1
s4

)

4 Running Time

First, we review the analysis of the
usual randomized incremental algorithm
for three-dimensional Delaunay triangula-
tion ([6, 10] or see [1, 2]). The running
time can be divided into two parts, the
time required to find where each new point
should be inserted into the Delaunay tri-
angulation (location time) and the time re-
quired to delete old tetrahedra and create
new tetrahedra so as to actually perform
the insertion (update time). Point location
can be done in various ways; the theoreti-
cally optimal methods have been shown to
be O(c(n)), where c(n) is a quantity known
as the total conflict size. The total con-
flict size is the sum, over all tetrahedra τ
which ever appear in the construction, of
the number of stoppers of τ . Total update
time is proportional to the total number of
tetrahedra which appear over the course of
the construction.

In the worst case, the size of a Delaunay
triangulation of n points in IR3 is O(n2),
and it turns out this is also the bound on
the total conflict size and hence the running
time. But in practice the size of the Delau-
nay triangulation is generally O(n). If we

assume in the “realistic” case that the ex-
pected size of the Delaunay triangulation
of a random sample of r of the points is
O(r) (which also seems to be true [3]), we
get a more realistic bound of O(n lg n) on
the total conflict size and the running time.
We show that the algorithm remains opti-
mal using a blocked randomized insertion
order in the worst case, and optimal in this
“realistic” case.

We begin the analysis of the blocked ran-
domized construction by bounding E[C],
the expected total number of tetrahedra
created during the course of the construc-
tion. Let ks be the number of possi-
ble tetrahedra with s stoppers, out of the
O(n4) total possible tetrahedra, and let Ks

be the number of tetrahedra with at most
s stoppers. Using the result of the previous
section, the expected number of tetrahedra
which appear is:

E[C] = k0 +
n∑

s=1

ksO

(
1
s4

)

Clarkson and Shor gave an upper bound
on ≤ k-sets that implies that that Ks is
at most O(n2s2) in the worst case, and
O(ns3) in the “‘realistic” case. Their proof
holds as n/s →∞. The bound was proved
for all 1 < s ≤ n in excruciating general-
ity by Mulmuley [9]. Here we give simpler
proofs for our specific cases, following his
approach.

Consider the following experiment. From
the set P of n points, we select each point
with probability 1/s to form a random sam-
ple R. Let r = |R| be the random variable
for the size of R. Let Tr be the random
variable for the number of tetrahedra in the
Delaunay triangulation of R.

In the “realistic” case, we assume that
Tr = O(r) so that by the linearity of ex-
pectation E[Tr] = O(E(r)) = O(n/s). Let
p(i) denote the probability that a tetrahe-
dron with i stoppers appears in the Delau-

nay triangulation of R. For i ≤ s,

p(i) =
(

1
s

)4 (
1− 1

s

)i

≥
(

1
s

)4 (
1− 1

s

)s

= Θ
(

1
s4

)

So we can express E[Tr] in another way:

E[Tr] =
n∑

i=1

p(i)ki

≥ Θ
(

1
s4

) s∑

i=1

ki

= Θ
(

1
s4

)
Ks

Therefore, Ks = O(n/s)

(1
s)

4 = O(ns3).

Now let’s consider the quadratic worst
case, in which E[Tr] = E[O(r2)] =
O(E[r2]).

E[r2] = V ar[r] + E2[r]

= n

(
1
s

) (
1− 1

s

)
+ (n/s)2 = O((n/s)2)

So, Ks = O((n/s)2)

(1
s)

4 = O(n2s2).

Upper bounds on the Ks of course are
upper bounds on the corresponding ks, but
these boun are too loose for our purposes.
In particular, the total number of possible
tetrahedra defined by n points is only O(n4)
and

n∑

s=0

O(ns3) =
n∑

s=0

O(n2s2) = O(n5)

We get a tighter upper bound on E[C] by
finding the values for the ks which maxi-
mize E[C], given the constraints imposed
by the bounds on the Ks.

Intuitively, making ks as large as possi-
ble for the smaller values of s maximizes
g(k1, . . . , kn). We prove a general claim
along these lines, which we then apply it to
the case in hand (and later as well). Fixing
an appropriate constant a and an exponent

q ≥ 1, we need to choose ks for 1 ≤ s ≤ n
which maximizes

g(k1, . . . , kn) =
n∑

s=1

aks

sq

and such that the constraint

Ks =
s∑

i=1

ki ≤ bs (3)

is satisfied for all 1 ≤ s ≤ n, where
b0, . . . , bn is any strictly increasing sequence
of numbers.

Note that k0 is the number of tetrahedra
in the final Delaunay triangulation, while b0

for convenience is defined as zero; we have

E[C] = k0 + max
k1,...,kn

{g(k1, . . . , kn)}

Of course there need not be any set of
points such that the maximizing values of
the ks are realized; we’re just choosing
numbers to get an upper bound.

Claim 2 g(k1, . . . , kn) is maximized when

ks = bs − bs−1

for all 1 ≤ s ≤ n

We prove the claim by induction on s.
When s = 1, k1 = b1 maximizes g(k1).
Now suppose the claim is true for s−1. We
break the possible choices of the ki into two
groups: those for which Ks−1 is less than
bs−1, and those for which Ks−1 is equal to
bs−1. (having Ks−1 > bs−1 violates the con-
straint). When Ks−1 = bs−1, we see that
g(k1, . . . , ks) is maximized when ks is cho-
sen to be bs − bs−1 and g(k1, . . . , ks−1) is
maximized, which, together with the induc-
tive assumption, satisfies the claim. Finally
we consider the case in which Ks−1 < bs−1.
Notice that when the claim is satisfied for
k1, . . . , ks−1,

Ks−1 =
s−1∑

s=1

(bs − bs−1) = bs−1

Hence, the pigeon hole principle implies
that in the current case, when Ks−1 < bs−1,
there must exist some 1 ≤ j ≤ s − 1 such
that kj < bj−bj−1. Now we note that using
kj +1 instead of kj and ks−1 instead of ks,

g(k1, . . . , kj + 1, . . . , ks − 1) =

g(k1, . . . , ks) + a(
1
jq
− 1

sq
)

and hence g cannot be maximized in this
case. This establishes the claim.
2

In the “realistic” case, q = 4 and we de-
fine the constraint bounds as

bs = cns3, 0 ≤ s ≤ n

where c is the constant in the big-O nota-
tion. With this definition, ks = cn(3s2 −
3s + 1) for 1 ≤ s ≤ n. Replacing ks in
the expression for E[S] we find that the ex-
pected total number of tetrahedra appear-
ing in the construction is

E[S] = O(n) +
n∑

s=1

cn(3s2 − 3s + 1)O
(

1
s4

)

= O(n) +
n∑

s=1

O

(
n

s2

)

= O(n)

We can use a similar argument to bound
the total conflict size and hence the loca-
tion time. The total conflict size assesses
a charge of s for every tetrahedron with s
stoppers that appears over the course of the
construction, and hence is:

E[c(n)] =
n∑

s=1

ksO

(
1
s4

)
× s

Again, c(n) is maximized by assuming
that the tetrahedra which appear have as
few stoppers as possible, so we apply the

Claim 2, using q = 3 and bs = cns3, hence
again choosing ks = cn(3s2 − 3s + 1):

n∑

s=1

cn(3s2 − 3s + 1)O
(

1
s3

)

≤
n∑

s=1

O

(
n

s

)

= O(n lg n)

We also get optimal bounds under the
quadratic worst-case assumption (when
k0 = O(n2)) about the expected size of the
Delaunay triangulation and the values of
the ks. To bound the total number of tetra-
hedra created, we use the constraint bound
bs = cn2s2 and q = 4.

Claim 2 shows that choosing ks = bs −
bs−1 = cn2(2s−1) for 1 ≤ s ≤ n maximizes
g.

Under the worst-case assumption, then,
the expected number of tetrahedra ever cre-
ated is at most

E[S] = O(n2) +
n∑

s=1

n2c(2s− 1)O
(

1
s4

)

= O(n2) +
n∑

s=1

O

(
n2

s3

)

= O(n2)

and the expected number of total conflict
change is at most

n∑

s=1

n2c(2s− 1)O
(

1
s3

)

=
n∑

s=1

O

(
n2

s2

)

= O(n2)

5 Experiments

We used Clarkson’s hull and Shewchuk’s
pyramid to test the effect of our blocked

randomized insertion order on the thrash-
ing behavior of a three-dimensional Delau-
nay triangulation program. We used hull
because it implements the theoretically op-
timal randomized incremental algorithm on
which our analysis is based. Due to the
huge size of its point location structure, the
history DAG, hull begins to thrash rel-
atively early and therefore cannot handle
large data. Shewchuk’s pyramid is a more
recent, faster three-dimensional Delaunay
triangulation program. It uses a theoret-
ically non-optimal point location scheme
without any additional storage beyond the
Delaunay triangulation itself. We used
pyramid because we wanted to demonstrate
very large Delaunay triangulation compu-
tations using our blocked randomized in-
sertion order.

While we expected the effect of the in-
creased locality of reference on the perfor-
mance to be beneficial, it is not easy to pre-
dict. A fundamental problem with trying
to optimize memory usage when comput-
ing Delaunay triangulations is that inser-
tions may affect parts of the triangulation
that are quite distant in three-dimensional
space. Moreover, since the Delaunay trian-
gulation is represented by a pointer struc-
ture, there is no requirement that even ad-
jacent tetrahedra are stored together in vir-
tual memory; this is implementation de-
pendent. Both hull and pyramid do their
own memory management, to avoid mak-
ing too many calls to malloc. Tetrahedra
are stored in a list, and in pyramid records
are freed as tetrahedra are destroyed and
reused as new tetrahedra are created, fur-
ther reducing spatial locality. 1

The data come from two sources - iso-
surfaces of volumetric data (MTD, B1)
and laser range scanner (happy budda).
The MTD dataset (184,895 points) con-
sists of samples from an iso-surface of elec-

1We thank Jonathan Shewchuk for pointing out
this issue.

0

1000

2000

3000

4000

5000

6000

7000

8000

30000 60000 90000 120000 150000 180000

T
im

e
(s

ec
on

ds
)

Number of Points

Random
Blocked

Figure 1: The running time of hull on MTD
data using random order and blocked ran-
dom order.

0

500

1000

1500

2000

2500

0 100000 200000 300000 400000 500000 600000

T
im

e
(s

ec
on

ds
)

Number of Points

Blocked

Figure 2: The running time of hull on B1
data using blocked random order.

tron density map of a protein, and the B1
dataset (525,296 points) is obtained by ap-
plying one level of the butterfly subdivision
scheme to MTD to make a denser, bigger
data set. The happy budda data is from
the Stanford 3D scanning repository. We
chose the raw scanner data, consisting of
2,643,633 noisy points as better example
of typical input to a surface reconstruction
computation than the smaller, cleaner, and
more evenly distributed vertex set of the
completed model. Since we were interested
in pushing the limits our our technique, we
made larger data sets by duplicating and
translating the budda data, making inputs
that were the union of two and of four bud-
das.

We divided all of the datasets into blocks
using a kd-tree, stopping when we had 512

blocks for the MTD and B1 data and 4096
blocks for all of the larger happy budda
datasets. The kd-tree computation can be
done with sorting and sequential sweeps
through the data; it does not cause thrash-
ing. Similarly the determination of the
blocked randomized insertion order can be
done with sequential sweeps and is very
quick in practice.

0

5000

10000

15000

20000

25000

30000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
T

im
e

(s
ec

on
ds

)

Number of Points

Happy

Figure 3: The running time of pyramid for
happy budda data using blocked random
order

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

T
im

e
(s

ec
on

ds
)

Number of Points

4 happy buddas
2 happy buddas
1 happy budda

Figure 4: The running time of pyramid on
1,2,4 happy budda data sets using blocked
random order and without selecting n1/4

random samples for point location

For the hull experiment, we used a
Linux machine with an Intel Pentium III
(864 MHz), 511 M RAM and 4 GB of vir-
tual memory. Note that the large virtual
memory is essential; the program fails once
virtual memory is exceeded.

In Figure 1, the running time for random
insertion order and our blocked randomized

insertion are shown. We could finish the B1
data using blocked randomized insertion as
shown in Figure 2. Though the slope for
the blocked randomized insertion order be-
comes steeper around 120,000 points - just
where there was a serious thrashing for ran-
dom order - the blocked order maintains a
roughly constant slope and shows a near-
linear running time.

For pyramid, we used a much less pow-
erful machine, just to be dramatic, a Sun
UltraSPARC 360 MHz CPU with a small
128M physical memory, and again 4 GB of
virtual memory.

Initially, we were able to complete the
Delaunay triangulation of the happy budda
using the blocked randomized insertion or-
der, but we found that as the size of the
data structure grew, the asymptotic ef-
fects of the point location strategy began
to dominate. See Figure 3.

The point location strategy used in
pyramid is known as jump-and-walk; at
the insertion of the ith point pi, it selects
O(i1/4) already-inserted points at random,
and finds the closest of these to pi. It then
selects either this point, or the last point
inserted, whichever is closer to pi, and be-
gins “walking” in the Delaunay triangula-
tion from there to find the place at which to
insert pi. Using the blocked insertion order,
the last point inserted was almost always
the closest to pi, and the expensive search
for a closer point was generally wasted.

Eliminating the O(i1/4) search and al-
ways starting from the last point inserted
gave us an essentially linear running time,
as seen in Figure 4. We could complete the
Delaunay triangulation of four buddas, over
10 million points. Of course, with this point
location strategy the theoretical bounds on
the expected running time are very bad.

6 Other applications

Although we give the proofs in terms of
the 3D Delaunay triangulation construc-
tion, the analysis applies to other similar
randomized incremental constructions, in
particular the optimal construction of the
trapezoidation of a set of non-intersecting
segments in the plane [6, 7, 8] (and the sim-
ilar construction for intersecting segments).
This algorithm is practical, and using it on
large input sets of segments might be im-
portant, for instance in geographic informa-
tion systems.

Let us refer generically to the objects cre-
ated in the incremental construction (eg.
Delaunay tetrahedra in previous sections)
as the regions. A drawback of the analy-
sis in this paper is that it depends on ev-
ery region having the same number of trig-
gers. Thus, although it seems natural to
use trapezoids as the regions in an analy-
sis of trapezoidation, we cannot apply this
analysis as a trapezoid may have as many as
four or as few as two triggers. Fortunately,
as pointed out by Mulmuley [7], trapezoi-
dations can be analyzed using attachments
as the regions. An attachment is the verti-
cal line segment inserted at the endpoint of
an input segment; it is defined by the end-
point and the two segments hit by the top
and the bottom of the attachment, hence
its number of triggers is always three. The
stoppers of an attachment are the segments
intersecting the attachment.

In general, when the number of triggers
is b, the analysis of section 3 implies that
the probability that a region with s stop-
pers appears in the incremental construc-
tion is O(1/sb), in this case O(1/s3). The
bound on Ks, the number of possible re-
gions with at most s stoppers, is in gen-
eral E[Tr]sb, where here Tr is the number
of trapezoids of a random sample of seg-
ments, each chosen with probability 1/s.
Hence E[Tr] = O(n/s) and we get a bound

of Ks = O(ns2). Using the argument in
section 4 to get a worst-case choice of the
ks, we find that the expected total num-
ber of attachments created is O(n) and and
the expected running time is O(n lg n). It
would abe nice to find an analysis that han-
dles situations in which the number of trig-
gers can differ, but is upper-bounded by
some constant.

We believe that our analysis can be ap-
plied to randomized incremental algorithms
which use tracing, such as Seidel’s practical
O(n lg∗ n) algorithm for trapezoidation of a
simple polygon [12], and we are currently
working in this direction.

Another important class of randomized
incremental algorithms are the LP-type
(aka GLP) problems, which optimize an ob-
jective function over a set of input regions.
Blocked randomized insertion orders may
also give optimal algorithms for LP-type
problems, although the fact that many LP-
type problems have regions which are inher-
ently defined by different numbers of trig-
gers will require a different analysis. In any
case, this research direction, while natural,
does not seem as pressing since LP-type al-
gorithms do not build large data structures.

On the other hand, the performance
of LP-type algorithms can be enhanced
in other ways by heuristic insertion or-
ders [16]. Similarly Barber’s qhull pro-
gram for arbitrary-dimensional convex hull
uses a heuristic insertion order designed to
insert points on the convex hull early [17].
Particular blocked randomized insertion
orders, or some other partially-random
scheme, might allow these heuristics to be
applied while still maintaining optimality.

Finally, we have in no way shown that a
blocked randomized insertion order is guar-
anteed to improve the performance of an in-
cremental construction. Theoretical results
in this direction would certainly be interest-
ing.

References

[1] K. Mulmuley. Computational Geom-
etry: An Introduction Through Ran-
domized Algorithms. Prentice Hall,
New York, 1993.

[2] M. de Berg, M. van Kreveld,
M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algo-
rithms and Applications. Springer-
Verlag, Berlin, 1997.

[3] S. Choi and N. Amenta. Delaunay tri-
angulation programs on surface data,
The 13th ACM-SIAM Symposium on
Discrete Algorithms, 2002.

[4] R. Seidel. Backwards analysis of of
randomized geometric algorithms. In
J. Pach, editor, New Trends in Dis-
crete and Computational Geometry,
Pages 37-68, Springer-Verlag, Berlin,
1993.

[5] K. Mulmuley and O. Schwarzkopf.
Randomized Algorithms, Chapter 34
in ”Handbook of Discrete and Com-
putational Geometry”, J. E. Good-
man and J. O’Rourke, eds. CRC
Press, 1997.

[6] K.L. Clarkson, and P.W. Shor, Appli-
cations of random sampling in com-
putational geometry, II. Discr. and
Comp. Geometry 4 (1989), pp. 387–
421.

[7] K. Mulmuley. A Fast Planar Parti-
tion Algorithm, I, Journal of Sym-
bolic Computation, (1990) 10, 253-
280.

[8] K. Mulmuley. A Fast Planar Parti-
tion Algorithm, II. Journal of the
ACM, 38(1):74-103, January 1991

[9] K. Mulmuley. On levels in arrange-
ments and Voronoi diagrams, Dis-
crete and Computational Geometry,
6:307-338, 1991

[10] K. L.Clarkson, K.Mehlhorn, and
R.Seidel. Four results on randomized
incremental constructions. Comp.
Geom.: Theory and Applications,
pages 185–121, 1993.

[11] R. Seidel. Small-dimensional linear
programming and convex hulls made
easy. Discr. and Comp. Geometry 6
(1991), pp. 423–434.

[12] R. Seidel. A simple and fast in-
cremental randomized algorithm for
computing trapezoidal decomposi-
tions and for triangulating polygons.
Comput. Geom. Theory Appl., 1:51–
64, 1991.

[13] L. P. Chew. Building voronoi dia-
grams for convex polygons in lin-
ear expected time. CS Tech Report
TR90-147, Dartmouth College, 1986.

[14] G. Blelloch, J.Hardwick, G.Miller,
and D.Talmor. Design and Imple-
mentation of a Practical Parallel
Delaunay Algorithm. Algorithmica,
24(3/4), 1999.

[15] P. K. Agarwal, M. de Berg, J. Ma-
tousek, and O. Schwarzkopf. Con-
structing levels in arrangements and
higher order Voronoi diagrams. SIAM
J. Comput., 27:654– 667, 1998.

[16] E. Welzl. Smallest enclosing disks
(balls and ellipsoids), in New Results
and New Trends in Computer Sci-
ence, (H. Maurer, ed.), Lecture Notes
in Computer Science 555 (1991) 359–
370.

[17] C. B. Barber, D. Dobkin, and H.
Huhdanpaa, The quickhull algorithm
for convex hulls, ACM Trans. Math.
Software 22(1996), 469-483.

[18] O. Devillers and P. Guigue. The shuf-
fling buffer, International Journal of
Computational Geometry and its Ap-
plications, 11:5, pp 555–572, (2001).

