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Abstract

R?can be divided into a union of parallel (d—k)-flats of the form #; = g1, 20 = ¢a,.. .2 =
gi, where the g; are constant. Let C be a family of parallel (d — k)-dimensional convex
sets, meaning that each is contained in one of the above parallel (d — k)-flats. We give a
parameterization of the set of k-flats in IR?, such that the set of k-flats which intersect, in a
point, any set ¢ € ', is convex. Parameterizing the lines in R® through horizontal convex
sets as convex sets has applications to medical imaging, and interesting connections with
recent work on light field rendering in computer graphics. The general case is useful for
fitting k-flats to points in RY.

The following easy reduction is well known. Let C be a finite set of parallel line segments in
R?. We want to find a (d —1)-transversal for C', that is, a hyperplane intersecting every segment
in C'. Such a hyperplane has to pass below the upper endpoint of each segment and above the
lower endpoint. In the dual, the endpoints correspond to linear halfspaces, and the intersection
of these halfspaces corresponds to the set of hyperplane transversals of the parallel segments in
the primal. So the problem is solved by linear programming in dimension d, in linear time if d
is fixed.

Here, we give the appropriate generalization of this observation for k-transversals, for 1 <
k < d. A k-transversal of a family of sets C' is a k-flat (that is, a k-dimensional affine subspace)
intersecting every set in C'. Figure 1 shows the case k = 1,d = 3.

Figure 1: The set of lines intersecting all members of a family of parallel polygons can be
represented as a convex set.



A family C of (d — k)-dimensional sets in R? are parallel if they can be rotated so that each
set ¢ € C lies in a (d — k)-flat

T1 = 91,22 = g2,..- T = gk

where g1, ...gp are constants and z1, ...,z are the first k coordinates of a point € R% From
now on we will just assume that ' is so rotated. We say that a k-flat y intersects a set ¢ € C
non-degenerately if y N ¢ consists of a single point; a k-flat in general position intersects a set
¢ € C non-degenerately, if at all. Our Main Theorem 2.2 gives a parameterization under which
the k-flats intersecting non-degenerately any member of C' form a convex set in RF1D(d=k),
This result is a simple algebraic consequence of adopting the “right” parameterization of k-flats
in R% But it has both mathematical and practical implications.

1 Background

An immediate consequence is the following.

Theorem 1.1 The Helly number for k-transversals of parallel (d — k)-dimensional convex sets

is(k+1)(d-k)+ 1.

A family of sets C has Helly number h for some property I (here, the property of having a
k-transversal) when h is the smallest integer (if one exists) such that any finite subfamily C' C C
has property II if and only if every subfamily B C C with |B| < h also has II. Theorems of
the form “C has Helly number h” are called Helly-type theorems because they follow the model
of Helly’s theorem, which states that the family of convex sets in R? has Helly number d + 1.
Helly’s theorem together with Theorem 2.2 implies Theorem 1.1.

There are many Helly-type theorems about hyperplane transversals, and some about line
transversals (see [GPW93]), but this is the first theorem giving a finite Helly number for k-
transversals for all 1 < k < d for some family of sets. While, as we observed in the introduction,
the space of hyperplanes in R is isomorphic to R?, the space of k-flats in R?, for 1 < k < (d-1),
is a curved projective manifold, known as a Grassmanian, and generally much more difficult to
work with. Goodman and Pollack define the convex sets in a Grassmanian as the sets of k-
transversals of convex sets in R? [GP94]. They show that this definition is a generalization of
convexity, in some senses, but, for instance, convex set under their definition can have multiple
connected components. We exhibit subsets of the Grassmanian which are convex in the usual
sense.

The special case of Theorem 1.1 for kK = 1,d = 3, was given by Griinbaum [G60], which
suggested our approach.

One immediate algorithmic consequence of Theorem 2.2 is that a k-transversal of a finite
set C of parallel (d — k)-dimensional sets, if one exists, can be found by a convex program in
dimension (k 4+ 1)(d — k), in linear expected time if d is constant. The case of line transversals
in R3 is the first interesting one, and it has some applications in computer graphics.

Medical images, such as CAT scans and MRI images, are given as a set of parallel two-flats.
When the regions in each image are decomposed into convex pieces, the line transversals of
the various possible subsets of pieces form a convex subdivision of R* under our parameteriza-
tion. This subdivision is interesting for volume visualization and, as we discuss below, for path
planning for lasers, needles or other invasive linear elements.

Our parameterization is also used in computer graphics in a recent paper by Hanrahan and
Levoy on light field rendering [HL96], in which an object is represented by the radiance on the



directed lines incident to it. A light field is a hyper-rectangular set of lines including those
incident to the object. A quantized light field is stored in a four-dimensional array, and an
image is constructed by selecting the lines through a particular viewpoint, which correspond
to a two-flat through the hyper-rectangle. Theorem 2.1 implies that certain linear halfspaces
through the hyper-rectangle correspond to the sets of lines of constant depth in R3. This may
have some application to the important problem of reconstructing the three-dimensional shape
of an object from its light field representation.

Finding line transversals is an important subproblem in the visibility preprocessing of large
scenes in computer graphics, although admittedly it is difficult to imagine a scene which requires
solving the special case of the problem treated here.

In general dimension, Theorem 2.2 can be applied to the problem of fitting k-flats to points.
Every point # € R?is contained in exactly one member g of a set of parallel (d—k)-flats, and any
k-flat f in general position intersects ¢ in exactly one point. We define the (d — k)-dimensional
distance between z and f to be the Fuclidean distance from x to the point in which f intersects
g. Figure 2 again shows the case k = 1,d = 3. This metric is a higher-dimensional analogue of
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Figure 2: The distance between f and z is measured in the (d — k)-flat g.

the vertical distance. We show that finding the k-flat which minimizes the maximum (d — k)-
dimensional distance to any member of a set of points is a Convex Programming problem and
can be solved in expected linear time.

2 Main Theorem

We have defined parallel (d — k)-flats in R? to be the affine subspaces satisfying z; = ¢1, 29 =
g2, ..Tk = gk, where the g; are constants. Let us define the set H of parallel (d — k)-half-flats
to be the sets formed by the intersection of a linear halfspace in R? with one of the parallel
(d — k)-flats, that is, a set satisfying the equalities

rr = 41

Lk = Gk

and some inequality
A Tpy1 + .o g_prqg > 1

A (d — k)-half-flat h, , in H is determined by the g; and the a;, and so has d coefficients.
A k-flat in general position in R? intersects any (d — k)-flat g in a single point. We will
parameterize a k-flat in general position by its points of intersection with each of the k£ + 1



following (d — k)-flats:

w = {x1=0,22=0,...,25 =0}
w = {xy=1,29=0,...,25 =0}
uy = {xy=0,29=1,...,25 =0}
up = {x1=0,20=0,...,2, =1}
Such a point, for each ug, is specified by the (d — k) values of #y41,...,24, which we shall call

Y(ik41)s - - - Y(i,d)- A k-flat Y in general position is thus specified by (k+ 1)(d — k) independent
parameters, the entries in the matrix

Yo,k+1) -+ Y0,4)
Y = e

Yk k+1) -+ Y(&d)

In order to simplify the notation below, we will subtract the first row from each of the subsequent
rows, representing a k-flat by the matrix

Y(0,k4+1) - Y(0,d)
Y — Y ,k4+1) — Yo,k+1) - Y(1,d) ~ Y(0,d)
Yk k1) — YO,p+1) -+ Ykd) — Y(0,d)
This corresponds to an affine transformation of the space of k-flats. Rows 1,...k now express
the change in 2g4q,...,24 per unit change in zq,..., 2.

Theorem 2.1 The (k+ 1)(d — k)-dimensional set of k-flats in R? can be parameterized so that
the k-flats intersecting, non-degenerately, any (d — k)-dimensional half-flat in H form a linear
halfspace in RE+1(d=F),

Proof. The points of the k-flat Y are the points of the form:
Tlgee oy Tk
(1,2q,...25) - Y’

This notation indicates the concatenation of z1,..., 2 with the vector (1,z1,...2%) - Y'. A
k-flat in general position will intersect the (d — k)-flat 21 = g1, 22 = g2, ..., 2k = gi in the point

gi,-- -, 9k
(17917 .. gk) - Y’
That point lies in the half-flat %, , if and only if
(17917"'7gk) Y (alv"'va(d—k))T >1

Since the ¢g; and the a; are constants, f, , induces a linear inequality on the 3/(2 i) and therefore
also on the y; ;. i



Theorem 2.2 The (k4 1)(d — k)-dimensional set of k-flats in R? can be parameterized so that
the non-degenerate k-transversals of any family C' of parallel (d — k)-dimensional convex sets
form a convex set in RE+1)(d=F)

Proof. A convex set ¢ € C is the intersection of a (possibly infinite) family H of (d — k)-
dimensional half-flats in H. By Theorem 2.1, the set of k-flats non-degenerately intersecting
such a half-flat form a linear halfspace in RtD(@=%) The k-flats intersecting every half-flat
in H correspond to the intersection ¢’ of the corresponding halfspaces in RUHDE=F) This is a
convex set. So the intersection of the ¢’ is an intersection of convex sets, and so again a convex
set. i

3 Some algorithmic corollaries

We describe a few of the algorithmic implications of our main theorems.

3.1 Finding k-transversals

From Theorem 2.1, we can infer immediately

Corollary 3.1 A non-degenerate k-transversal of a family C' of parallel (d — k)-dimensional
polytopes, if one exists, can be found by linear programming in dimension (k+ 1)(d — k). When
d 1s fized, this requires time linear in the total number of facets of C'.

And, from Theorem 2.2,

Corollary 3.2 Let C' be a finite family of parallel (d — k)-dimensional convex sets. A non-
degenerate k-transversal of C', if one exists, can be found by convex programming in dimension

(k+ 1)(d — k).

Convex programming is the problem of minimizing a convex objective function over the inter-
section of a family of convex sets. Any convex function on the space of k-flats can be used as the
objective function for the convex program in Theorem 3.2, most conveniently a linear function.
Convex programming is an LP-type problem, as defined in [MSW92] (see [A94b] for a little more
on convex programming). This means that if d is constant and the k-flat minimizing the objec-
tive function for any subset of at most (k + 1)(d — k) + 1 members of C, if one exists, can be
found in time ¢, then a line transversal for C' can be found in expected time O(|C| + t;1g|C]),
which is linear in |C| when ¢, is small enough.

3.2 Medical images and path planning

Medical images of three-dimensional anatomy such as CAT scans and MRI images are given
as intensity images in a family of parallel slices. These slices can automatically segmented so
that each is represented as a union of polygonal convex regions of constant or continuously
varying intensity. FEach region is assumed to represent a slice of a particular kind of tissue.
Under our parameterization, the lines bounding these polygons correspond to an arrangement
of hyperplanes in the four-dimensional space of lines in R?.

We sketch one algorithmic consequence of this observation. Consider the problem of finding
a path for a biopsy needle which goes to a tumor while missing a collection of vital organs. The
vital organs, the non-vital tissue, and the tumor are all represented by collections of parallel
convex polygons. We wish to find all acceptable paths for the needle. The set of acceptable



paths corresponds to a union of cells in the corresponding hyperplane arrangement in the four-
dimensional space of lines. Each cell in this arrangement is a subset of lines.

The arrangement can be constructed by random sampling [C87]. We select a constant size
random sample of the parallel polygons, construct the arrangement induced by their edges in
the space of lines, and subdivide each cell of this arrangement into simplices. We construct a
subproblem for each simplex consisting of the polygons which intersect any of the lines in the
simplex. For each simplex s, we maintain the set of polygons for which are intersected by every
line in s. These can be kept in sorted order, since the polygons are parallel. We also maintain
the first polygon in this set corresponding to a vital organ, if any, and the first corresponding
to the tumor. Recursively proceeding on the subproblems gives us a tree which represents the
arrangement. A leaf in this tree is a set of lines, and tracing the path from the leaf to the root
gives us all the polygons intersected by that set of lines.

This data structure requires time and space O(n*t). To find the leaf cells corresponding
to acceptable needle paths, we traverse the arrangement by depth-first search and keep track
of whether the tumor or a vital organ is hit first by the current set of lines. If a path exists,
we will find at least one leaf for which this is true. While this gives an O(n**®) algorithm,
our intuition is that in practice it would be much more efficient. The set of lines passing
through three polygon edges is unlikely to intersect a fourth edge, so in practice the algorithm
as described will probably tun in roughly O(n?) time. Furthermore, the only important cells
are those intersecting the tumor. Only constructing those cells could reduce the running time
to something like O(n?). The fact that the representation is linear makes the algorithm feasible
to implement.

3.3 Fitting k-flats to points

We defined the (d — k)-dimensional distance from a point « to a k-flat f in general position to be
the Fuclidean distance from x to the point in which f intersects the unique member ¢ of the set
of parallel (d—k)-flats containing z. This metric is not as exotic as it may seem. When we fit a k-
flat to a set of points using Least Squares, we are computing the k-flat which minimizes the sum
of the squared (d — k)-dimensional distances to each of the points. The metric is appropriate, for
instance, when x is a multidimensional data point for which the coordinates zq, ...,z represent
variables which are known exactly and 2341, ..., 24 represent variables which are measured with
some error. Here, we use combinatorial methods to compute the k-flat which minimizes the
mazimum (d — k)-dimensional distance to any point, in time linear in the number of points.
Let X be our set of n points in R% The region at (d — k)-dimensional distance at most ¢
from a point € X is a (d — k)-dimensional disk ¢. in the unique flat ¢ containing 2 in the
set of parallel (d — k)-flats. For the entire set X, these disks form a set C. = {c. || 2 € X} of
parallel (d — k)-dimensional convex polytopes. Now consider the (k+ 1)(d — k) + 1 dimensional
cross-product Y x Rt. A point y,¢ in this space represents a k-flat in R? and a value of .

Lemma 3.3 Y x RT can be parameterized so that, for any point x € X, the set of points y, e
which correspond to a k-flat intersecting, non-degenerately, the disk c. around x form a convex
sel.

Proof. Each disk ¢, is the intersection in g of an infinite family H,. C H of (d — k)-dimensional
half-flats, each %, 4. of the form

A Thi1 + oo Qg — € 2 Ag_fi1



where the ¢; are normalized so that a% + a% + ...a?l_k = 1, and ag_g41 is determined by the
requirement that at ¢ = 0, the equality aq12541 + ... 04-42q = ag—p+1 Will be satisfied by the
point & € X at the center of the disk.
Any k-flat Y/ in general position intersects ¢ in the point ¢ - Y/, and that point lies in h, ;.
if and only if
(Lgts- s 91) - v (alv---va(d—k))T — £ 2 ad—k+1

This is a linear inequality in the Y/ xR™. The set of k-flats intersecting every c. is the intersection
of this infinite set H, . of linear halfspaces, and hence a convex set. [l

So the sets of close-enough k-flats at every ¢ form convex sets of points in R*+D(d=k)+1,
To find the minimum ¢ at which there is a k-flat that is within ¢ of every point, we just have
to minimize the linear function ¢ over the intersection of these convex sets. This gives us the
following.

Theorem 3.4 Let X be a finite family of points in R%. The k-flat which minimizes the maz-
imum (d — k)-dimensional distance to any point of X can be found by convex programming in
dimension (k+ 1)(d — k) + 1, in linear time when d is fized.

Note that this result also applies to distance functions in which the disk around every point
is replaced by some other (d — k)-dimensional unit ball, for example what we might call the
(d — k)-dimensional L! distance or the (d — k)-dimensional L°>° distance.

4 Remarks

4.1 Disclaimer

Note that these theorems only apply to non-degenerate k-transversals. If the parallel (d — k)-sets
in C' fail to span R% they might have a degenerate k-transversal, which intersects some ¢ € C
in a subspace of dimension greater than zero. In the first interesting case of line transversals in
R3, there may be a degenerate transversal when the parallel two-dimensional convex sets in C'
all lie in the same plane. Finding a line transversal of a family of convex sets in the plane is
clearly not a convex programming problem, since the set of line transversals may have up to n
connected components, n = |C']. And in fact there is a lower bound of Q(nlgn) for the special
case of finding a line transversal for a family of unit balls in the plane [LW86].

4.2 Projective transformation

The family of parallel (d—k)-flats can be defined as the set of (d—k)-flats intersecting a (d—k—1)-
flat at infinity f.. spanned by the points at infinity on the k+1,...,d axes. Theorem 2.1 tells us
that the family of k-flats intersecting a (d — k — 1)-flat contained in one of these parallel (d — k)-
flats forms a hyperplane under our parameterization. These (d — k — 1)-flats also intersect f..
Consider a projective transformation which moves f., to an arbitrary (d — k — 1)-dimensional

flat f.

Corollary 4.1 Let Hy be the set of (d — k — 1)-flats intersecting a given (d — k — 1)-flat f in
R?. The set of k-flats in R? can be parameterized so that the k-flats intersecting any (d —k —1)-
dimensional flat in Hy form a hyperplane in RE+1)(d=k)



4.3 Axis aligned boxes

The following easy observation is a special case of Theorem 2.2.

Observation 4.2 The k-flats in R can be parameterized so that the set of k-flats intersecting
any member of a family of parallel (d — k)-dimensional axis-aligned boxes is convez.

Such an axis-aligned box can be defined as points satisfying
1 =401

Lk = Gk
and the inequalities

ar < Ty < by

ag—r)y < ¥ < big_p
Substituting in the expression for the intersection of Y/ and g, we get
(alv"'va(d—k))T < (17917"'7gk) Y’ < (blv"'vb(d—k))T

This system can be separated into (d — k) separate systems of linear inequalities, one for each
column of Y’, and solved as (d — k) lower-dimensional linear programs, which is much faster.
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