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Figure 1: Our system takes as input a wireframe model produced from a 3D curve sketch, and outputs a set of curved surface
patches representing the object. The output objects need not be manifold, or connected. From left to right, phoenix, roadster,
spider and boat curve networks created with ILoveSketch on top, and the output sets of surface patches on the bottom.

Abstract
Recent 3D sketch tools produce networks of three-space curves that suggest the contours of shapes. The shapes
may be non-manifold, closed three-dimensional, open two-dimensional, or mixed. We describe a system that auto-
matically generates intuitively appealing piecewise-smooth surfaces from such a curve network, and an intelligent
user interface for modifying the automatically chosen surface patches. Both the automatic and the semi-automatic
parts of the system use a linear algebra representation of the set of surface patches to track the topology. On
complicated inputs from ILoveSketch [BBS08], our system allows the user to build the desired surface with just a
few mouse-clicks.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation, I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

Recent tools for 3D curve drawing [WS01,BBS08,SKSK09]
have simplified the process of sketching 3D shapes, as a
method of high-level shape design. These user interfaces
are intended to allow ideas to be expressed visually, without

impeding the user’s creativity. For instance, many of them
mimic drawing on paper. 3D sketching interfaces are par-
ticularly effective for shape ideation (i.e. the generation of
concept shapes), that can be used in the early phases of col-
laborative design.
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Figure 2: An example of an ILoveSketch input (spacecraft
30) for which the automatic phase of our system finds an
acceptable surface and no user interaction is required.

The outputs of these design tools are networks of curves
in R3. Such a curve network can usually be interpreted as a
wireframe model of a piecewise-smooth surface; by “wire-
frame model” we mean a representation of a surface by its
edges alone. Constructing the 3D surface from the wireframe
model is commonly referred to as “surfacing”, “lofting” or
sometimes “skinning.” Surfacing is an important part of the
design process; it produces more realistic and less confusing
visualizations of the concept shape. While surfaced sketches
are generally not suitable as production specifications or fi-
nal designs, they can serve as a starting point or inspiration
for a modeler to construct a precise CAD model.

Surfacing also clarifies the designer’s intentions. Many
curve sketches are ambiguous (the boat in Figure 1 is a good
example), meaning that the same curve network could be the
wireframe of several different surface models. The surfaces
represented by artist’s 3D sketches are often non-manifold;
artists can, and often do, allow three or more surface patches
to meet along a curve. The desired outputs may include both
two- and three-dimensional regions. This lack of topologi-
cal structure greatly increases the number of mathematically
possible interpretations of an input curve network.

Contribution

This paper presents a method that automates a significant
portion of the surfacing process, greatly reducing the re-
quired user interaction. We focus on finding patches to form
reasonable non-manifold surfaces, which has not been stud-
ied much in the past, but is necessary for 3D sketch input.

Our system begins with an automatic phase in which the
system produces its best guess for the desired set of sur-
face patches. This is followed by a user-interaction phase,
in which the user can add and delete surface patches. Both
phases make use of the topological structure of the current
set of patches. We demonstrate the system on networks of
curves produced by ILoveSketch [BBS08], although it could
take input from other 3D sketching programs as well.

Overview

We take as input a wireframe model represented by a graph
with edge curves, and output set of patch boundaries as a

set of cycles in that graph. Topologically, a set of patches
may or may not close off some number of three-dimensional
solids, forming a model which may have both two- and
three-dimensional parts. Our approach is to select an ini-
tial maximal set of patches which forms a two-dimensional
surface, including every curve, but closing off no solids.
We then present the user with an interface that allows her
to delete and replace surface patches, and/or add additional
patches which close off solids.

The automatically-created two-dimensional, possibly
non-manifold but solid-free surface forms a cycle basis for
the graph. A graph has many possible cycle bases, so we use
a heuristic weighting function on cycles to define an opti-
mal one. Our system is based on the insight that it is easy
to compute an optimal cycle basis with respect to an arbi-
trary weighting function on cycles. This rather simple obser-
vation does not appear to have been applied before in this
domain. We use a weighting function which prefers cycles
with a small number of edges, which are close to being flat,
and which do not separate the graph. This heuristic seems
to work well on the ILoveSketch [BBS08] input, but any
heuristic could be plugged into our framework.

In the user-interaction phase, we help the user refine the
cycle basis: when she deletes a patch, we suggest other low-
weighted patches that could replace it in the basis. We also
suggest patches that might close off solids, using a different
heuristic that scores not only cycles but also the solids that
they create. Suggesting topologically acceptable and heuris-
tically optimal new patches gives a simple yes/no user inter-
face, which is faster and more pleasant than having the user
choose the edges of a cycle with several point-and-clicks.

We begin in Section 2 by describing the relationship of
our method to previous work on patch finding. In Section 3
we describe cycle bases in more detail, and we explain the
algorithm and the weighting function in Section 4. User in-
teraction is described in Section 5. We end with some results
(Section 6) and discussion (Section 8).

2. Related Work

Most prior work in patch finding has focused on two-
dimensional drawings of wireframe models of manifold sur-
faces, sometimes with holes or non-planar faces. This prob-
lem is significantly different from ours; the input is strictly
two-dimensional, rather than three-dimensional, which in-
troduces more ambiguities, and the stronger topological con-
straint on the output makes the space of solutions smaller
and more structured. This problem is quite difficult, and
mature systems like Liu, Lee and Cham [LLC02] and Var-
ley [VC10] include elaborate sets of heuristics and sophis-
ticated search strategies. A few of the manifold patch find-
ing algorithms [MW80,AW92] take three-dimensional wire-
frame models as input.

For non-manifold surfaces from two-dimensional draw-
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ings, Shpitalni and Lipson [SL96] proposed a heuristic
search algorithm, using the constraint that the common
boundary between two faces should always be smooth. Liu
and Lee [LL01] sped up their algorithm by finding minimal
cycles more efficiently and by formulating a better search
algorithm, reporting performance similar to ours. Sun and
Lee [SL04] give some interesting analysis of when a ver-
tex, edge or face must be non-manifold. Sketch inputs are
less constrained than the simple CAD models considered in
these papers; for some (eg. the phoenix in Figure 1), the de-
sired surface has patches adjacent along sharp edges, and
in general the inputs are more complex, curved, and more
mixed-dimensional.

If the input is a three-connected planar graph, it is pos-
sible to find the correct face structure by embedding on the
sphere [Han82, DB83, SL96]. Inoue et al. [ISC03] consider
two-connected planar graphs, which can be embedded onto
the sphere in multiple ways; they produce many solutions
and then score them. Many non-manifold models, such as
the roadster in Figure 1, are 2-connected planar graphs. In-
oeue’s algorithm would reconstruct them as solids, but possi-
bly the algorithm could be adapted to produce non-manifold
surfaces.

Cycle basis approaches, like ours, have in the past been
applied to genus-zero manifolds. The algorithm of Gan-
ter and Uicker [GU83] starts with an arbitrary cycle ba-
sis, and pivots from one cycle basis to better one by
adding cycles together as described in Section 3. Brewer
and Courter [BC86] also followed this approach, optimiz-
ing the basis so that the number of edges shared by cy-
cles in the basis is minimized. We tried a pivoting approach
based on their ideas, but found that it often failed to pro-
duce a desirable cycle basis. The most relevant prior work
is probably by Bagali et al. [BW95], who construct a cy-
cle basis using a greedy algorithm. Cycles are added in or-
der of smallest total edge length, and the topological as-
sumption that the input is a solid of genus zero is used to
reject inappropriate choices. There is also theoretical work
[GH02, LR05, dP95, KMMP04, BGdV04] on greedily com-
puting cycle bases with minimal total edge length. These
papers provide polynomial-time algorithms by guarantee-
ing that not too many cycles are examined. Along with Var-
ley [VC10], we observe that weighting cycles by total edge
length does not seem to lead to good results in patch find-
ing. Our main innovation is the observation that weighting
cycles, rather than edges, allows us to encode a much more
flexible variety of heuristics into the set of weights, and that
any choice of cycle weights can be easily optimized via the
greedy algorithm.

3. Linear Algebra Framework

Any set of two-dimensional patches forms what is called
a two-dimensional cell complex. If it separates three-space
into two or more connected components, we treat all

Figure 3: The matrix representing the four faces of a tetra-
hedron. We can verify that the fourth column of the matrix
is the sum of the first three, using arithmetic modulo two.
We also observe that geometrically the cycle bounding the
fourth face is the sum of the first three, and that it closes off
a solid (the interior of the tetrahedron). Any choice of three
of these four columns forms a cycle basis (one of many pos-
sible cycle bases for this graph). The entire vector space of
cycles defined by the wireframe model would consist of all
possible sums of these four cycles; for example, the cycle
a,b,c,d is the sum of a,b, f and f ,c,d.

but the exterior as three-dimensional solids, producing a
three-dimensional cell complex (possibly containing two-
dimensional as well as three-dimensional parts). Our ap-
proach to selecting an initial set of patches is to construct
the largest two-dimensional complex we can before closing
off any solid three-dimensional regions.

Such a set of patches is called a cycle basis for the set of
cycles in the input graph. It is called a basis because the set
of cycles - that is, the set of possible patches - forms a vector
space. This vector space representation (described below) is
the same as that used in topology when computing homology
using the Smith Normal Form and in persistent homology
computation [EH08]. It is helpful to think of this structure
as an extension to two dimensions of the combinatorics of
spanning trees: a spanning tree in a graph is a maximal set
of edges forming no cycles, whereas here we are looking for
a maximal set of cycles forming no solids.

A cycle in a graph is a set of edges such that an even
number of edges meet at each vertex. Notice that under this
definition, cycles may have multiple connected components,
or vertices of degree greater than two. “Adding" two cycles
consists of taking their symmetric difference: shared edges
are deleted, and the remaining edges in either cycle are com-
bined into the new cycle. A cycle basis C is a set of cycles
such that every other cycle in the graph can be constructed
as a sum of some subset of the cycles in C. See the example
in Figure 3.

Computationally, this is implemented using matrix arith-
metic over the integers mod two, also known as the Galois
Field of order two, GF(2). The entire vector space could be
represented by a single large matrix M with a row for each
edge of the input graph, and a column for each possible cy-
cle. There is a 1 in matrix location mi, j if edge i belongs
to cycle j, and 0 otherwise. Adding two cycles c j,ck cor-
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responds to adding the corresponding columns in GF(2), so
that 1+1= 0; notice that this produces the symmetric differ-
ence, which is another cycle cl (i.e. cl = c j + ck). The three
cycles c j,ck and cl are dependent, since any one is the sum
of the other two. The rank r of M, over GF(2), is the size
of the largest independent set of columns. As usual, we can
select many possible bases for the vector space M, each of
which is a set of columns of size r. For a connected graph,
r = m� n+1, where m is the number of edges in the graph
and n is the number of vertices, but there is no requirement
that our inputs be connected, and many are not.

4. Automatic Patch Finding

In this section we describe the automatic phase of our patch
identification system. The input to this phase is an undirected
graph, whose edges are smooth curves. The curves meet at a
finite number of vertices, so that two curves may not overlap
over a non-negligible length. There may be, and often are,
multiple curves connecting the same pair of vertices. There
is no requirement that the output should be a manifold.

4.1. Algorithm

Just as there are many spanning trees in a graph, there are
many cycle bases; in fact, there are possibly an exponential
number of both cycles and cycle bases. Our objective is to
select an optimum cycle basis, where the optimum is defined
as the minimum using a heuristic weighting criterion (see
Section 4.2).

To produce the optimal basis, we use the standard greedy
matroid algorithm, which can be applied to any vector space,
with any weighting function on the elements. We write W (c)
to denote the weight of cycle c (or just W instead of W (c)
when clear). The weight of a cycle basis {c1, . . . ,cr} is the
sum of its cycle weights.

Theorem 1 [Law76] For any weighting function W , the
greedy matroid algorithm produces a minimum-weight ba-
sis.

Applied to minimum spanning tree computation, the
greedy matroid algorithm is Kruskal’s algorithm. Applied to
cycle basis computation, the greedy matroid algorithm pro-
ceeds as follows. We begin with an empty set of cycles C,
and at each step we greedily attempt to add the cycle c of
minimum weight W (c). If c is dependent on some subset of
the cycles in C, we discard it. If, on the other hand, c is in-
dependent, we add it to C and continue.

The current set of cycles C is represented as a set of col-
umn vectors as described in the previous section, and to see
if a new column vector is independent of the current set, we
append it to the current matrix, and compute the rank. If the
rank is increased by adding the new column, the new cy-
cle is independent of the previous set of cycles. We use the
FFLAS-FFPACK package [JGDP04] for linear algebra over
finite fields to compute the rank of the 0�1 matrix.

4.2. Weighting function

Choosing the heuristic weighting function W requires trade-
offs between simplicity, efficiency and the quality of the re-
sults. Our choice combines three heuristics into a single lex-
icographic function W .

Our first heuristic is that we prefer short cycles over
long ones. The second heuristic is borrowed from Bagali et
al. [BW95]: non-separating cycles are preferred over sepa-
rating cycles. A separating cycle is one for which removal of
the cycle vertices and all of their adjacent edges (including
the cycle edges) increases the number of connected compo-
nents in the graph.

To combine these two heuristics, we define for each cycle
the quantity

k = number of edges+(2+ e)s

where s is zero if the cycle is non-separating and one if it is
separating. Ordering the cycles by k means that we try first
non-separating cycles of length 2,3 and then 4, followed by
separating cycles of length 2, non-separating cycles of length
5, separating cycles of length 3, and so on. See Algorithm 1
for a bit more detail on how we generate and examine cycles
in this order.

Cycles with the same value of k are ordered geometri-
cally, by the volumes of their axis-aligned bounding boxes,
from smallest to largest. Since the curves are given as or-
dered sets of sample points, the computation of bounding
boxes is trivial. This choice favors nearly flat faces which
are well-aligned with the coordinate planes. It works sur-
prisingly well on the ILoveSketch [BBS08] data, perhaps be-
cause the wireframe models are drawn aligned with the coor-
dinate system. More sophisticated geometric heuristics, for
instance, the volume of the approximating ellipsoid found
by PCA, would of course be possible. But the limitations
that we see in the current system (see Section 8) do not seem
to be related to this design choice.

Combined with the fact that we consider the cycles in or-
der of edge length, this means that the cycle basis we find
optimizes the following lexicographic objective function W :
it finds a basis with minimum total summed value of k, and
of the many bases with that total sum of k, it finds one that
minimizes the sum of the volumes of the bounding boxes.

5. Topology-aware User Interface

Our user interface allows the user to both add patches to
close solids, and to delete patches, replacing them with alter-
native choices. The naive user interface for deletion is fine:
point at the patch, and click to delete it. But to add a patch,
either to close a solid or to replace a deleted patch, the naive
user interface is to indicate a sequence of edges, requiring
several delicate point-and-clicks, each taking a second or so.
This rapidly becomes tedious, which is the reason that au-
tomatic patch finding is desirable at all. Since some user
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Algorithm 1 Finding an optimal cycle basis
1: {INPUT: Graph [V,E]}
2: {OUTPUT: Cycle basis represented by matrix C }
3: C = [] {empty matrix}
4: for all i 2 {2, . . . ,n} do
5: for all v 2V do
6: Find all cycles of length i containing v, by breadth-

first search.
7: Store separating cycles in set Si, and non-

separating cycles in set Ni, removing duplicates.
8: end for
9: Rank the cycles in Ni by bounding box volume.

10: for all cycles c 2 Ni, in rank order do
11: Add vector representation of c to C.
12: Compute rank of new matrix C.
13: If rank did not increase, remove c and discard.
14: end for
15: if i � 4 then
16: Rank the cycles in Si�2 by bounding box volume.
17: for all cycles c 2 Si�2, in rank order do
18: Add vector representation of c to C.
19: Compute rank of new matrix C.
20: If rank did not increase, remove c and discard.
21: end for
22: end if
23: end for

interaction cannot be completely avoided, we use geomet-
ric/topological analysis to provide a better, semi-automated
user interface. In our interface, we show the user patches that
she might want to add, each of which can be accepted or re-
jected with a single click, in a small fraction of a second.
The user can always fall back to the naive interface, but we
did this for only two of the 34 models we have built.

Deleting a patch leaves an incomplete cycle basis. As a re-
placement patch, we suggest the next-best patch again using
the heuristic weighting function of Section 4.2.

Adding a patch to a set of cycles of full rank closes off a
new solid. Our system suggest closing patches using a dif-
ferent set of heuristics, which consider the solids as well as
the cycles. The first heuristic is again to prefer adding cy-
cles with few edges. Second, we prefer a patch c which in-
cludes many edges of degree one, and makes them degree
two in the closed model; a simple example would be the fi-
nal square patch closing off a cube. Third, we use the heuris-
tic that the area of the patch c closing off the solid should
be small relative to the area of the solid itself. This favors
larger solids, while not allowing large solids to be created by
adding large patches. We use the area of the largest side of
the axis-aligned bounding box of a patch as an estimate of its
area, since it is not easy to compute the area of a non-planar
patch. Again, we found that using the bounding box works
surprisingly well.

To detect the new solid potentially formed by the addi-
tion of cycle c, we again use the linear algebra mechanics
of Section 3. Let C be the matrix of rank r whose column
represent the current cycle basis (irrespective of whether the
model currently includes some solids already). We remove
each cycle ci in turn from C, and then consider the rank of
C� ci + c. If the rank is r, we know that ci would complete
a cycle containing c, and if the rank is r� 1, we know that
the cycle containing c is included in the set C� ci.

We combine the three heuristics in the following formula,
where cycles producing a large value of Ws(c) are preferred:

Ws(c) = 10⇤ (a+b)+ k

where a is the ratio total area estimate of solid s / area es-
timate of cycle c (i.e. the third heuristic), b is the number of
edges in c that have degree one in the current model (i.e. the
second heuristic), and k is the number of edges in cycle c.

6. Results

As mentioned before, we demonstrate our method by find-
ing patches in sample 3D wireframe models from ILoveS-
ketch [BBS08].

6.1. Pre-processing

The ILoveSketch [BBS08] output consists of unoriented
piecewise-linear curves (although the user enters curves with
a specific orientation, we do not assume that this is mean-
ingful), represented as sequences of points. Intersections are
not indicated, and in fact for most of the sketches the curves
fail to intersect each other at all. To produce a graph, we
assume that two curves intersect when they pass within a
user-defined threshold, and place the intersection at the clos-
est point. The threshold varies because different models are
more or less carefully drawn. When an intersection is found
the curves are automatically snapped together, with the dis-
placement interpolated across the edge to avoid introducing
sharp bends. We introduced some intersections which were
not found automatically, using Maya, so that we could get
all of the visually more interesting models. Dangling edges
(with a vertex of degree one) were removed. We assume that
the input curves are intended to be smooth, and we interpret
sharp corners within a curve as vertices of degree two. With-
out too much trouble, we turned 49 ILoveSketch models into
reasonable input graphs.

In a complete sketch-based modeling system where a sur-
facing algorithm such as ours would be used, the curve
drawing interface should probably include snapping of in-
tersection points, which would obviate much of this pre-
processing.

6.2. Results

Of the 49 input graphs we could use, we successfully pro-
duced sets of surface patches from 34 of them. We defined a
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Figure 4: Some examples of patches added and deleted in user interaction. (a) Input wireframe models provided from ILoveS-
ketch [BBS08]. Models in order from top are spacecrafts 84, 9, 63, 12, 20, 81 and 31 (b) Our algorithm successfully finds
almost all the expected patches on the models. (c) Only a few patches are needed to close solids (orange) or were not an in-
tended patch (red). We have shown the patches from different angles of the model for better visualization (only three of the (5/4)
deleted patches are show for spacecraft (12/81); others are mirror images). Examples of user interaction are included in the
accompanying video. Statistics on more models can be seen in Table 1.
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Total Patch # Patches

Model #Curves Time Time Auto. Manual
(sec.) (sec.)

Jetfighter 65 5 1 23 2 add 1 del.
Spacecraft19 65 4 1 26 2 add 2 del.
Spacecraft26 66 14 1 24 2 add
Spacecraft56 74 4 2 20 1 del.
Speaker 76 23 2 27 1 add
Spacecraft20 77 13 3 34 3 add
Phoenix 80 3 ~0 17 1 add
Spacecraft37 81 6 1 23 1 add 2 del.
Spacecraft9 86 3 1 37 2 del.
Roadster 86 18 1 31 -
Spacecraft75 88 9 1 22 1 del.
Spacecraft13 89 17 4 30 2 add
Spacecraft59 90 10 3 32 4 del.
Spacecraft36 95 18 5 34 1 add
Spacecraft38 95 23 6 36 2 del.
Boat 94 36 9 37 1 add 6 del.
Spacecraft57 107 14 6 37 -
Spacecraft84 108 33 9 42 2 add
Spacecraft33 109 20 8 38 1 add 2 del.
Spacecraft44 110 47 19 48 1 add 2 del.
Spacecraft77 111 12 4 31 -
Spacecraft81 111 28 12 43 1 add 4 del.
Spacecraft63 117 7 2 34 2 del.
Spacecraft85 126 167 16 54 3 add 2 del.
Spacecraft92 127 13 6 50 2 add 8 del.
Spacecraft30 132 69 30 50 -
Spacecraft49 139 9 4 39 5 add 8 del.
Spider 139 22 15 71 8 add
Spacecraft87 139 34 20 52 6 add 6 del.
Spacecraft90 140 30 15 45 2 add 3 del.
Spacecraft31 142 43 16 44 2 add
Spacecraft10 146 14 6 40 -
Spacecraft88 162 124 85 71 3 add 4 del.
Spacecraft12 196 66 51 70 3 add 5 del.

Table 1: This table shows processing time and the amount of
interaction required to produce the final models in the 34/49
cases in which our method could be used easily without fall-
back to the naive user interface. Total time includes generat-
ing the minimum-area surfaces for the patches. Deletes are
delete and replace operations.

case to be successful if we get almost all of the patches auto-
matically, the resulting surface is what we expected, and we
could make any necessary edits and close off any solids with
a few clicks, without resorting to the naive interface. Fig-
ures 1,2 and 4 show some of the original wireframe models
and the resulting patch sets. Table 1 shows the timing and the
amount of manual interaction required to construct all of the
34 models. All examples were run on a 2.4GHz Intel Quad
Core processor.

The 15 graphs for which we failed to produce a good
model within a few mouse clicks illustrate a number of limi-
tations of our algorithm, as well as the difficulty of the prob-
lem. These are discussed in Section 8.

6.3. User Feedback

We asked a professional artist and 3D modeler to infor-
mally validate all of our ILoveSketch examples (Table 1),
in order check that our subjective decisions about which
were the "right" patches were reasonable. We showed him
screenshots of the wireframe models followed by those of
our surface patch models, and asked him to evaluate the re-
sults based on the following two questions: "Are there any
missing or unexpected patches?" and "do the surface patches
help you understand the 3D shape better"? Overall, he felt
strongly that the surfacing was appropriate and improved his
understanding of the 3D shape. He did not see any missing
or unexpected patches in any of the images. He reported that
five examples did not improve his understanding of the in-
tended shape (the curve sketches were already sufficiently
simple or clear), while in eight examples the patches sig-
nificantly improved his understanding of the intended shape
(the wireframes were very confusing), and in most cases the
patches gave a somewhat clearer presentation of the intended
shape; there were no sketches for which the patches ob-
scured or worsened his understanding of the intended shape.

We also went through the interactive process on three
fairly complicated wireframe models (phoenix, and space-
craft 63 and 81). The user reported that in all cases, there
were no unexpected patches produced by the automatic gen-
eration phase (although in our results we had chosen to
delete and replace some patches on the two spacecraft; this
might suggest that our criteria for success was a little too
strict). In all three cases he was able to quickly choose the
missing surface patch that would close off an appropriate
volume. He also emphasized that in 3D as well as 2D the
surface patches helped him perceive the 3D shape faster than
the wireframe model, even though perceiving shape from
wireframe models is easier in 3D than it is from 2D images.

The main drawback of our system according to the artist
was the quality of the surfaces filling the patches (Section 7),
and improving this surfacing is indeed one of our main goals
in future work.

7. Creating Surfaces from Patch Boundaries

The main contribution of our paper is the identification of
the cycles forming the surface patches. But these patches can
have highly complex and non-planar boundaries, so that ren-
dering them for visualization is also a non-trivial problem.
For the sake of completeness, in this section we describe the
process we used for generating patch surfaces.

We map the patch boundary points onto a circle, using
the arc-length along the patch boundary as the parametric
distance along the circle. The circle is then triangulated,
adding interior points, using Triangle [She96]. The points
on the boundary are mapped back to their input positions,
and the positions of the new points on the interior of the

c� 2011 The Author(s)
c� 2011 The Eurographics Association and Blackwell Publishing Ltd.



Fatemeh Abbasinejad, Pushkar Joshi, Nina Amenta / Surface Patches from Unorganized Space Curves

Figure 5: An example of a model (spacecraft 79) in which we had to resort to the naive user interface (and hence not included
among the success cases in Table 1). Here we wanted the patch shown in orange. The system stubbornly wanted to make a big
patch with the little yellow and green squares (windows?) pasted up against it. Deleting that undesired patch led only to more
complicated versions of the same thing, eg. going around one of the windows with the others pasted against it. Detecting and
interpreting patches that lie on top of one another is one of the limitations of our system.

patch are computed by solving a linearized Laplacian prob-
lem over the triangulated 2D domain. Essentially, we obtain
a linear approximation of a soap film surface that interpo-
lates the boundary. This process is commonly used by others
for tessellating arbitrarily non-planar boundaries (for e.g. by
Mehra et al. [MZL⇤09]). This method does not behave prop-
erly when used for patch boundaries with large concavities
(e.g. the Phoenix wings in Figure 4(top) ), but the generated
surfaces seem good enough for our visualizations.

Each patch is currently rendered independently of the oth-
ers, which leads to some artifacts (eg. intersecting patches).
Future work will address the step of improving the overall
surfaces. We expect this to require automatically extracting
the correct patch normals for the boundary points (possi-
bly again allowing for user interaction). With G1 boundary
conditions for each patch, we could generate the patch sur-
faces using more sophisticated methods like those in Free-
drawer [WS01], non-linear Willmore flow [BS05] or varia-
tional radial basis functions [BMS⇤10].

8. Limitations and Discussion

We have developed a simple and robust framework for ex-
tracting patches from 3D wireframe models. To our knowl-
edge, ours is the first system that handles the kind of topo-
logically unconstrained 3D input data produced by modern
designer-friendly 3D sketching interfaces.

Fifteen of the ILoveSketch inputs produced undesired out-
puts, illustrating some of the limitations of our system. A
couple of these inputs consisted of curves which did not in-
tersect in a way that either we, or the system, could interpret
as a wireframe model of an object, although they looked vi-
sually suggestive. Another few included cycles consisting of
a single curve, with no vertices, which we do not generate
(we could and will).

But most were situations like the one illustrated in Fig-
ure 5, in which the heuristics failed because the sketches
included curves which represented features or decorations
on the surface of the object. This leads to problems because

our heuristics unfortunately have no problem with generat-
ing patches which overlap each other.

We also never generate cycles with more than one con-
nected component, that is, patches with holes, which causes
similar problems. Patches with holes are perfectly valid cy-
cles and can be included with no problem in the linear alge-
bra framework. Again, finding patches which overlap each
other would be a way to decide when to generate a patch
with a hole. The reason we do not find them is not a limita-
tion of that framework but that we currently never generate
them as candidate patches.

Better heuristics in other senses are possible as well. We
are not using the fact that the ILoveSketch inputs are sym-
metrical, for instance; this might be useful for automatically
generating a closing patch (often its symmetric partner is al-
ready included in the cycle basis), or mirroring user interac-
tions. It would also be interesting to derive heuristics based
on studies of the perception of 3D wireframes.

There are some heuristics that are properties of sets of
patches, and so cannot be expressed as weights on the cycles.
One is the idea employed by Shpitalni and Lipson [SL96]
and Liu and Lee [LL01] that a pair of patches should meet
along a smooth curve. Also, we do not encourage edges to
be manifold (exactly two adjacent patches), and most impor-
tantly on the ILoveSketch inputs we fail to discourage over-
lapping patches, as described above. Improving the proper-
ties of patch sets seems to be the next logical step for our
automatic system. We have begun to experiment with an ba-
sis improvement phase, after the computation of the heuris-
tically optimal cycle basis but before the interactive phase.

Memory is an issue for our current implementation. We
generate an exponential number of cycles in the process of
finding the basis, and save them to use later in the interactive
phase. This would be better handled by regenerating cycles
if needed rather than saving them. We also have some mem-
ory issues in the optimization of the surface generation step.
Because of these problems, we could not handle some of the
largest ILoveSketch inputs.

c� 2011 The Author(s)
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