
ECS 89

4/2 and 4/4

Announcements

  Lecture tomorrow at 12, here (regular discussion
time)

  Discussion Fri at 10, here (regular lecture time)

First Assignment

  Write a Python program that helps the user turn this
dataset into…

… into this

Details

  Object-oriented program
  Program uses a bunch of datatypes that come from

a module
  Your job is to write the eiadata module

Objects

  Let’s make an object that represents a deck of
cards.

Objects

  Let’s make an object that represents a deck of
cards.

 class Deck:
 def __init__(self):
 self.cards = []
 for num in range(1,14):
 for suit in ["h","s","d","c"]:
 card = str(num)+suit
 self.cards.append(card)

 

Classes and __init__

  The class defines a data type, eg. class Deck
  Usually start with a capital letter
  A piece of data – an object – can have this class
  To make an object of this type, use the initialization

method (aka a constructor)

 D = Deck() D is a variable containing a Deck

  There might be lots of objects of the same class.

Methods

  Methods are functions that belong to a class
  Eg. string methods like split() work on strings, list

methods like append() work on lists...
  You can make up methods that work on the data in

your class

attributes

  A class includes some code, maybe a lot of code.
  Usually a class also contains some data (in this

example, the list of cards). The data are called
attributes.

  Access the attributes with the dot:
 print D.cards

  Not all the variables used in a class are attributes.

self

  The code inside the class has no idea what the
object is called. There might be lots of objects of
this class.

  The word self refers to the object itself.
  To access the object’s own data using the code in the

class, use self instead of the variable name.

 self.cards.append(card)

printing

  Printing out the class just gives nonsense
  Attributes might be lists or more complicated data

structures
  Nice to have things print out pretty

 def __str__(self):
 s = ""
 for card in self.cards:
 s += card+" "
 return s

Local variables

  s is local to the function __str__
  Invisible outside the class
  Invisible to other functions in the class

  self.cards is global to the whole class
 Visible to other functions in the class
 Visible outside the class, with variable containing an

object replacing “self”

Classes in their own module

  Tidier to put the classes into their own module.
  We could use these cards in a poker program, or in

a bridge program, or for a magic trick…
  Only thing the main program has to know is the

classes, attributes, and methods, not how they are
implemented.

Project 1 program structure

  Project 1 is a common programming problem:
 get data in,
  select, reformat, compute…
 put data out

  Crucial design choice: how to store data within the
program. Ask yourself two questions:
 What is the data?
 What are the outputs going to be?

Name decoder data

  .csv file – data fields separated by commas
  First field – name
  Second field – meaning
  In EIA data for Project 1, you have 15 or so fields.

  Output?

Name decoder data

  .csv file – data fields separated by commas
  First field – name
  Second field – meaning
  In EIA data for Project 1, you have lots more fields.

  Output?
  Need to report meaning when given name

  SO…DICTIONARY!

Reading a file

 def __init__(self):
 f = open("names.csv","rU")

 for line in f:
 words = line.split(",")

 print words

Using a dictionary

 def __init__(self):
 self.nameD = {}
 f = open("names.csv","rU")
 for line in f:
 words = line.split(",")
 name = words[0]
 meaning = words[1]
 self.nameD[name] = meaning

Get data out of dictionary

 def define(self,name):
 if name in self.nameD:
 return self.nameD[name]
 else:
 return "nothing that I know of"

