
ECS 89

4/2 and 4/4

Announcements

  Lecture tomorrow at 12, here (regular discussion
time)

  Discussion Fri at 10, here (regular lecture time)

First Assignment

  Write a Python program that helps the user turn this
dataset into…

… into this

Details

  Object-oriented program
  Program uses a bunch of datatypes that come from

a module
  Your job is to write the eiadata module

Objects

  Let’s make an object that represents a deck of
cards.

Objects

  Let’s make an object that represents a deck of
cards.

 class Deck:
 def __init__(self):
 self.cards = []
 for num in range(1,14):
 for suit in ["h","s","d","c"]:
 card = str(num)+suit
 self.cards.append(card)

 

Classes and __init__

  The class defines a data type, eg. class Deck
  Usually start with a capital letter
  A piece of data – an object – can have this class
  To make an object of this type, use the initialization

method (aka a constructor)

 D = Deck() D is a variable containing a Deck

  There might be lots of objects of the same class.

Methods

  Methods are functions that belong to a class
  Eg. string methods like split() work on strings, list

methods like append() work on lists...
  You can make up methods that work on the data in

your class

attributes

  A class includes some code, maybe a lot of code.
  Usually a class also contains some data (in this

example, the list of cards). The data are called
attributes.

  Access the attributes with the dot:
 print D.cards

  Not all the variables used in a class are attributes.

self

  The code inside the class has no idea what the
object is called. There might be lots of objects of
this class.

  The word self refers to the object itself.
  To access the object’s own data using the code in the

class, use self instead of the variable name.

 self.cards.append(card)

printing

  Printing out the class just gives nonsense
  Attributes might be lists or more complicated data

structures
  Nice to have things print out pretty

 def __str__(self):
 s = ""
 for card in self.cards:
 s += card+" "
 return s

Local variables

  s is local to the function __str__
  Invisible outside the class
  Invisible to other functions in the class

  self.cards is global to the whole class
 Visible to other functions in the class
 Visible outside the class, with variable containing an

object replacing “self”

Classes in their own module

  Tidier to put the classes into their own module.
  We could use these cards in a poker program, or in

a bridge program, or for a magic trick…
  Only thing the main program has to know is the

classes, attributes, and methods, not how they are
implemented.

Project 1 program structure

  Project 1 is a common programming problem:
 get data in,
  select, reformat, compute…
 put data out

  Crucial design choice: how to store data within the
program. Ask yourself two questions:
 What is the data?
 What are the outputs going to be?

Name decoder data

  .csv file – data fields separated by commas
  First field – name
  Second field – meaning
  In EIA data for Project 1, you have 15 or so fields.

  Output?

Name decoder data

  .csv file – data fields separated by commas
  First field – name
  Second field – meaning
  In EIA data for Project 1, you have lots more fields.

  Output?
  Need to report meaning when given name

  SO…DICTIONARY!

Reading a file

 def __init__(self):
 f = open("names.csv","rU")

 for line in f:
 words = line.split(",")

 print words

Using a dictionary

 def __init__(self):
 self.nameD = {}
 f = open("names.csv","rU")
 for line in f:
 words = line.split(",")
 name = words[0]
 meaning = words[1]
 self.nameD[name] = meaning

Get data out of dictionary

 def define(self,name):
 if name in self.nameD:
 return self.nameD[name]
 else:
 return "nothing that I know of"

