
ECS 89

5/12

Announcements

  Checkpoint on Proj3 due Wednesday night (pushed
back one day)

  Set up user ID Django database, Web sites for user
ID entry

Pedometer data entry – use it!

pc110.cs.ucdavis.edu:10002/hw2/index.html

Steps so far - checklist

  Start app (python manage.py startapp newpolls)
  Edit newpolls/models.py, add database classes
  Edit mysite/settings.py to connect models to Django
  python manage.py syncdb
  Put some data in with shell (not necessary in HW)
  Edit mysite/urls.py
  Add and edit newpolls/urls.py
  Add and edit newpolls/views.py
  Put templates into newpolls/templates/newpolls

Today

  Getting a form onto a Django Web page
  Getting data out of URL and using it
  Familiar data transfer strategy: pass variables in a

little dictionary

Template for voting page

 <h1>{{ question }}</h1>

{% if message %}<p>{{ message }}</p>{% endif %}

<form action="/django/newpolls/vote" method="get”>

{% for choice in choices %}

 <label><input type="radio" name="choice"

 value="{{ choice.id }}" />

 {{ choice.choice_text }}</label>

{% endfor %}

<input type="submit" value="Vote" />

</form>

Django templates

  A variable is inside {{ }}
 {{ message }}

  Attributes of objects via the usual dot notation,
 eg. choice.choice_text or choice.votes

More templates

  Programming constructs inside {% %}
 {% if message %} – this means if message is not
empty.

  Block ends with {% endif %}
  Can have {% if…%}…{% else %}…{% endif %}

  For loop
 {% for choice in choices %}…{% endfor %}

Fill in data for template in views.py

def detail(request):

 p = Poll.objects.get(id=1)

 context = { 'question': p.question,
 'choices': p.choice_set.all(),

 'message': "" }

 return render(request, 'newpolls/detail.html', context)

  context is a dictionary where keys are template
variable names and whose values can be constants or
items from database

GET vs POST HTTP request

<form action="/django/newpolls/vote” method="get”>

  Recall these are two ways to send form data to the
server. GET puts it into the URL; POST puts it in the
body of the HTTP request.

  Tutorial uses POST, but GET is visible.
  Produces URL such as:

pc110.cs.ucdavis.edu:10000/django/newpolls/vote?choice=1

Template for reporting votes

<h1>{{ question }}</h1>

{% for choice in choices %}

 {{ choice.choice_text }} got {{choice.votes}} votes.

{% endfor %}

Return to poll

Finding the vote in views.py

def votes(request):

 p = Poll.objects.get(id=1)

 try:
 selected_choice = p.choice_set.get(id=request.GET['choice'])

  request is an HttpRequest object
  request.GET is a method returning a dictionary of

variable names and values, from the URL, eg.
 …./votes?choice=1&poll=1

  Will give the dictionary:
 {“choice”: 1, “poll”:1}

Do something with the vote

def votes(request):

 p = Poll.objects.get(id=1)

 try:
 selected_choice = p.choice_set.get(id=request.GET['choice'])

  Why put it in a try-except construct?

Do something with the vote

def votes(request):

 p = Poll.objects.get(id=1)

 try:
 selected_choice = p.choice_set.get(id=request.GET['choice'])

  Why put it in a try-except construct?
  Because the request might not be coming from the poll

but from a malicious or random source. So the code
in the GET string might not correspond to a real
choice.

When it is a good choice

except :

 …

else:
 selected_choice.votes += 1

 selected_choice.save()

 context = { 'question': p.question,

 'choices': p.choice_set.all()}

 return render(request, 'newpolls/vote.html', context)

  Count the vote, and produce the Web page

When it is a bad choice

except (KeyError, Choice.DoesNotExist):

 # Redisplay the poll voting form.

 context = { 'question': p.question,
 'choices': p.choice_set.all(),

 'message': "You didn't select a choice"

 }

 return render(request, 'newpolls/detail.html', context)

  Go back to the poll, this time with an error message

Try reloading vote count page

  What happens and why?
  How to fix – next time.

Permissions tip

  Once you get into Django, you should get
informative error messages.

  If you get 505 server errors, chances are something
does not have the right permission.

  Try going to /var/www/yourname and:
 chmod 770 –R mysite

  This sets permission on everything in mysite to
rwxrwx---

