
ECS 89

5/19

Announcements

  Final Django code due tomorrow night
 Form enter user data, put it into User table -
 this code is now available on the project Web page

 Python program to put data from steps.csv into
Pedometer table – discussed last time

 Form to display combined User and Pedometer data

  Prof. Amenta extra office hour Mon 2-3
  Jesse’s regular office hour Mon 4-5

Next steps

  We want to add in the pedometer data
  This is coming from steps.csv
  We can write a regular Python program to load

objects into Django databases
  Put the program in /var/www/yourname/mysite

Load Django, settings, our classes

from django.core.management import setup_environ

from mysite import settings

setup_environ(settings)
from steps.models import User, Pedometer

We can now write a normal python program that accesses

our Django database. For example:

#u = User(uid=”gump", transport=“bike")
#u.save()

Class for pedometer data

class Pedometer(models.Model):

 user = models.ForeignKey(User)

 steps = models.PositiveIntegerField()
 month = models.PositiveIntegerField()

 day = models.PositiveIntegerField()

  The ForeignKey function indicates that this attribute is
a relation to a row of the User table

  If the User is not in the user table, add them in, with a
default transport mode of “walk”

Our database setup

amen bike

RudyH bus

70707 walk

5 10 3467

5 6 10987

5 8 4653

05 08 7652

5 13 3982

User

Pe
do

m
et

er

Query by user

Reponse Response

  Includes data from both tables
  First, get the User data
  Use the get function; for instance, say you have put

the uid from the HTTP GET request into variable
queryID:

 u = User.objects.get(uid=queryID)
 t = u.transport # get the mode of transportation

Database get function

  Returns an object containing a data row
  Raises an exception if there is no row that matches

the condition, or if there is more than one.
  So it has to sit in a try-except construction!

  This is the obvious approach for the User data, but
how about the Pedometer data?

  Let’s review our options.

The all function

 ps = Pedometer.objects.all()

  Gets data in all rows of pedometer table.
  ps will contain a QuerySet (basically a list) of

pedometer objects, one for each row.
  We could read through the list and find all whose

user object was equal to u (the one we got out of
the user table).

  Pros/cons?

The filter function

 ps = Pedometer.objects.filter(user__uid=queryID)

  Gets only the Pedometer records where the uid of
the pointed-to user matches the queryID (see pix
next slide)

  Digs through whole Pedometer table
  Might have faster implementation
  Pros/cons?

So if queryID was 70707…

amen bike

RudyH bus

70707 walk

5 10 3467

5 6 10987

5 8 4653

05 08 7652

5 13 3982

User

Pe
do

m
et

er

The pedometer_set function

 ps = u.pedometer_set.all()

  Goes through the user object, traverses the arrows
backwards

  Should be very efficient
  This is such a common operation there is extra

support for it.

