
ECS 89

5/28

Announcements

  Next assignment due Tu June 3
  Final in this room, Wds June 11, 8AM

  Agenda for today:
 Assignment
 Objects
 DOM events
 Animation loop

  Theme: functions in Javascript are objects

Assignment: A game. Any game.

  What could we do with this?

Objects

  Creator function sets attributes.
  Python “self”  Javascript “this”

// creator function for object

function Paddle(halfWidth) {

 this.x = 200;

 this.halfWidth = halfWidth;

 this.hot = false;
 ….

Methods

  A method is just an object attribute that happens to
be a function.

 // a method

 this.draw = function() {

 if (this.hot) { ctx.fillStyle = "rgb(255, 255, 100)"; }

 else { ctx.fillStyle = "rgb(170, 215, 130)"; }

 ctx.fillRect(this.x-this.halfWidth, 400-20,
 this.halfWidth*2, 10);

 }

Note: function has no name

this.draw = function() {

 …..
  “this.draw” is an attribute of canvas; it contains a

function-object
  The function itself has no name
  It is certainly possible to put a function with a name

into an attribute; we’ve seen that in HTML:

<button type="button" onclick="myFunction()">Try it</button>

Two methods to change the color

 // another method - called when mouse is pressed

 this.beHot = function(e) {

 this.hot = true;
 }

 // another method - called when mouse is released

 this.beCool = function(e) {

 this.hot = false;
 }

DOM events

  We have already seen one kind of DOM event:

<button type="button" onclick="myFunction()">Try it</button>

  Interaction with mouse clicks, motion, keyboard clicks
can be associated with any DOM element.

  For the game, we associate them with the canvas.
  The DOM element is an object (eg. canvas); these

attributes of the object are functions that are called
when the event happens.

DOM events

  We can put a function into the attribute in the
Javascript code instead of in the HTML:

var canvas = document.querySelector("canvas")

function grabEvents() {

 // let paddle respond to all events

 canvas.onmousedown = function(e) {pad.beHot(e)};
 canvas.onmouseup = function(e) {pad.beCool(e)};

}

Possible mouse events

  These are called by touchpad, trackball, etc.

onclick, ondblclick
onmousedown, onmouseup
onmousemove
onmouseover, onmouseout

  There is a touch interface that does similar things for
fingers on a touchscreen.

Event object

canvas.onmousedown = function(e) {pad.beHot(e)};

  The event function is called … by what? …with a
parameter that is an event object; it has a number of
useful attributes. For a mouse event:
 clientX
 clientY
 button – which mouse button was pressed or

 released
  You’ll need to Web surf about these

onmousemove

  We’ll need this to get one of our custom objects to
follow the mouse…something like this:

canvas.onmousemove = function (e) {pad.follow(e);}

And in the Paddle object creation:

this.follow = function (e) {

 x = e.clientX;

 y = e.clientY;
 …

Animation

  Also handled by running a function
  It draws a (possibly) slightly different picture – a

frame - each time, creating the illusion of motion

Very nice animation mechanism

function frame() {

 requestAnimationFrame(frame); // request the next frame

 updateAnimation(); //draw
 }

  requestAnimationFrame says this function – frame –
should be called …by who? … the next time the
screen refreshes (typically in 1/60th of a second)

  Then we draw the picture
  So this is kind of an infinite loop

