
ECS 89

5/30

Announcements

  Next assignment due Tu June 3
  Final in this room, Wds June 11, 8AM

  Today:
 Sound
 Security

Getting sounds

  The Audio HTML element holds a sound clip, just like
the Img element holds a picture.

  Like Canvas, this is new in HTML5.
  So to use this, you need an audio clip.
  One place to look – SoundBible.com
  Formats - .wav, .mp3. I used .mp3 but I think .wav

would have worked.

An Audio object in Javascript

var bell1 = new Audio("Bell.mp3");

  The variable bell1 contains an Audio object.
  This is a special case of an HTMLMediaElement,

which also includes video!
  One method: play!

bell1.play() // rings the bell

Issue in Explorer

  What is the problem?
  How to fix?

Security

  So far nothing we have done is secure
  Anybody can go onto our Web sites and put

information into our databases; we are only
checking that the format is correct

  If we cared about our server data (eg. users
private data, financial data, a service we are
trying to sell…) we need to control access

Login

  We need to get users to log in before allowing them
access to server data.

  Eavesdropper attack: a computer “listening” to the
login process can learn your password.

You
logging
in

Server

Encryption

  HTTPS – the S is for Secure
  All communication between you and the server is

encrypted
  Over-simplified encryption example: add k to the

unicode for every letter. So if k = 3 and my
password was “abc”, I would send “def”

  Eavesdropper sees “def”, not my password
  Server decrypts by subtracting k=3, getting “abc”

The session key k

  Very important that I know k, and the server knows
k, but the eavesdropper does not!

  Need to establish k before the log-on process
  Keep k until session is over, eg. until browser is

closed
  “Handshake” protocol when first accessing the

server over HTTPS to establish k

How to establish k?

  Use public-key encryption.
  Scheme with two keys, e for encryption and d for

decryption. Server keeps d secret, but not e.
  Idea: (WAY oversimplified!)

You
logging
in
 k

Server

d(e(k)) = k
e

Hey!

e(k)

Complication

  Someone could pretend to be the server and hand
out bogus e’ keys

  And then you give them your password…

You
logging
in
 k

Server

d(e(k)) = k
e’

Hey!

e’(k)

Certificates

  A Certification Authority publishes guarantees that
the public key of the server is indeed the right one
for that server

  Server has to pay for this service!
  Browsers have a list of Certification Authorities that

they trust

Invalid Certificate Web page Common model

  HTTPS is clearly needed for login
  Banks, purchases, etc. then use the private key for

the rest of the session
  Some Websites – including Facebook in its default

settings - then use regular HTTP for subsequent
transactions

  Cookie stored in browser is sent with every message
to let the server know which session this is

Firesheep

  Install this Firefox app, and visit your local coffee
shop

  Steals cookies as they go by

FIresheep

Issues holding back more HTTPS

  Cost of certificates
  Virtual hosting
  Disables caching in the network, which can slow things

down
  Makes servers run slower
  More complication in general (why we did not do it)

  Any server transaction assuming privacy should be
using HTTPS

