
ECS 89

5/7

Announcements

  Checkpoint on Proj3 due Tuesday
  Make sure you have set up model for Django

database for pedometer project, making sure the
user ID part is to the level of the tutorial.

  Final part will be to read in pedometer data, add
to database, and make some Web pages that let
users look up combinations of data items.

Pedometer data entry Pedometer data

  Using Alisha’s app
  Up at pc110.cs.ucdavis.edu:10002/hw2/index.html
  Make up a UID, four letters/digits
  Use it consistently, please; we are not checking

Last time

  Django’s Model class represents database table
  We create a child class for every table in our

database, that inherits from Model
  Let’s continue with tutorial…adding Choice

Talking to databases

  The database code (sqlite3) does not understand
Python objects

  Standard interface to database code is SQL

 python manage.py synchdb

  Generates SQL commands to make all current
models, adds corresponding rows and columns to
database if they are not already there

Relation between model elements

  ForeignKey is a method of Model. We inherited it.
  It connects Poll to Choice; that arrow in the picture
  It makes a relation (as in “relational database”)
  Poll has many choices but each choice has one Poll

Poll

question

Unique #

Choice

Text

Unique #

Looking at model in the shell

  This is a tool to help develop the Django app, not
generally for users.

  Some Model methods:
  __init__ with keyword parameters for all attributes:

 p = Poll(question="Did you reach your goal today?",
pub_date=timezone.now())

 p.save() - puts an object into database.

Model methods for extracting data

  Polls.objects.all() – gets everything
 queryObj = Poll.objects.all()
 for o in queryObj:
 print o.question

  Variable queryObj contains a QuerySet object,
which includes a list of objects of type Poll, and
other stuff

  Polls.objects.filter(question__contains=“goal”)
Produces a QuerySet containing only some of the objects,

those that have the string “goal” in their questions

Methods using relation b/w tables

Choice.objects.filter(poll__question__contains="goal")
returns a QuerySet containing all choices belonging

to any poll question that contains the word “goal”

Poll.objects.filter(choice__choice_text__contains="Y")
returns a QuerySet containing all polls that have a

choice whose choice_text contains a “Y”

Views and URLs

  Views are the functions that produce the output
string that gets returned in a HTTP response, usually
HTML (what else might it be?)

  We connect views to URLs in the urls.py file.
  The urls.py file in mysite/mysite sends urls to the

right apps.
  The urls.py file within each app sends urls to the

right views.
  URLs are specified by regular expressions.

Regular expressions

  Where did they come up before?
[0-9] # a digit between 0 and 9
[0-9]+ # one or more digits
[0-9]* # zero or more digits

^a # “a” at the beginning of line
a$ # “a” at end of line
^$ # empty string

Example

 url(r'^[0-9]+/results/$’

  The r before the string stands for “raw”; tells Python
not to over-think things like “\n”, and just pass a “\”
and an “n” to whatever function is going to take this
string as an argument.

  And the rest?

Example in tutorial

 r’(?P<poll_id>\d+)/results/$’

  Captures the digit and sticks it into parameter
poll_id, which is then sent to the results function.

  We are not going to have to do something like this,
so we can stick to regular expressions like the ones
on the previous slide.

