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Abstract

This paper studies the point location problem in Delaunay triangulations without preprocessing and additional
storage. The proposed procedure finds the query point by simply “walking through” the triangulation, after
selecting a “good starting point” by random sampling. The analysis generalizes and extends a recent result for
d = 2 dimensions by proving this procedure takes expected time close to O(n1/(d+1)) for point location in Delaunay
triangulations ofn random points ind = 3 dimensions. Empirical results in both two and three dimensions show
that this procedure is efficient in practice. 1999 Elsevier Science B.V. All rights reserved.

Keywords:Computational geometry; Geometric computing; Randomized algorithms; Delaunay triangulations;
Point location; Three dimensional

1. Introduction

Point location is one of the classical problems in computational geometry and has various applications
of practical relevance, for example, in the areas of geographic information systems (GIS) or computer-
aided design and engineering (CAD/CAE). The problem is well studied in the computational geometry
literature and several theoretically optimal algorithms have been proposed; see for example, Snoeyink’s
recent survey [23]. Unfortunately, algorithms that are optimal in theory do not necessarily yield to good
practical performance. This is also true in the case of point location, mainly because of the necessary
preprocessing time and additional storage requirements.

Actual engineering implementations often use tree structures to guide the point location, for example,
the “alternating digital tree” of Bonet and Peraire [4], which typically come very close to the theoretically
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optimal logarithmic time complexity of the problem. However, all these methods require a certain amount
of preprocessing for the creation of additional data structures (and their maintenance, for the dynamic
version of the problem). “Bucketing” algorithms, see, for example, Asano et al. [2], can even achieve
constant search time, on average, for uniform distribution, for input in a bounded domain, but they, too,
require extra preprocessing, especially within each bucket, and additional storage. Here, we will discuss
a technique that is efficient in practice, usesnopreprocessing time,noadditional storage, and, as a bonus,
could not be easier to implement.

Point location, in its full generality, deals with the following problem: given a set of disjoint geometric
objects, determine the object containing a query point. The literature often restricts the objects to cells
of subdivisions of geometric regions. This work focuses even further on point location within the
triangles or tetrahedra of triangulations of 2D and 3D point sets; in fact, the actual analysis is restricted
to Delaunay triangulations of random points. The focus on triangulations is justified since regions of
arbitrary subdivisions can be triangulated. Moreover, the query problem in triangulations itself occurs
quite frequently in practice; for example, in mesh generation and finite-element analysis (FEA).

Delaunay triangulations.For completeness, we briefly include the following definitions. Theconvex
hull of a finite point setX is the smallest convex set containingX. The convex hull of a set ofk+1 affinely
independent points inRd , for 06 k 6 d, is called ak-simplex; that is, a vertex, an edge, a triangle, or
a tetrahedron, etc. Ifk = d, we also say the simplex isfull dimensional. A triangulation T of X is a
subdivision of the convex hull ofX consisting only of simplices with the following two properties: (i) for
every simplex inT , all its faces are also simplices inT ; (ii) the intersection of any two simplices inT is
either empty or a face of both, in which case it is again a simplex inT . A Delaunay triangulationD of
X is a triangulation in which the circumsphere of each full-dimensional simplex has no points ofX in its
interior.

Point location by walking. The basic idea is straightforward and not at all new; it goes back to early
work on constructing Delaunay triangulations in 2D and 3D [7,18]. Given a Delaunay triangulationD
of a setX of n points inRd , and a target pointq; in order to locate the (full-dimensional) simplex
in D containingq, start at some arbitrary simplex inD and then “walk” from simplex to neighboring
simplex “in the general direction” of the target pointq. The underlying assumption is that theD is given
by an internal representation allowing constant-time access between neighboring simplices. The list of
suitable data structures includes the 2D quad-edge data structure [19], the edge-facet structure in 3D [11],
its specialization and compactification to the domain of 3D triangulations [20], or its generalization to
d dimensions [8].

A pseudo-code for the simple “walking” method in 2D can be found in [19]. This procedure is
guaranteed to terminate only in Delaunay triangulations. For arbitrary triangulations it may go into an
infinite loop; see, for example, [15]. However, the infinite loop can be broken, for all practical purposes,
by introducing randomness when selecting which neighboring simplex to visit next; see Section 6.

The “walking” method has been ignored by most theoreticians in computational geometry since not
much can be said about its performance theoretically, other than it is “expected” to take time proportional
to n1/d when the points are randomly distributed [18,7]. However, because of its exceptional simplicity,
the method is often used by practitioners in the geometric computing community, in particular, in mesh
generation for FEA.
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Jump-and-march. In the following, we modify the method somewhat. First, we “march” towardsq

by strictly traversing the simplices intersected by a line segmentL, starting at a vertex of the initial
simplex, and ending inq. This makes it easier to analyze the procedure (and trivially eliminates the above
mentioned infinite-loop problem); although, as discussed empirically in Section 6, it seems to reduce the
expected number of visited simplices only marginally, and actually degrades the actual performance.
Second, we “jump” to a good starting point via random sampling on the point set{X1,X2, . . . ,Xn}. This
enhances the overall procedure significantly; in a sense, we are simulating the effects of the bucketing
approach by random sampling.

Given the Delaunay triangulationD of thesen points {X1,X2, . . . ,Xn}, and a query pointq, the
following procedure locates the simplex ofD containingq, if such a simplex exists.
(1) Selectm pointsY1, . . . , Ym at random and without replacement fromX1, . . . ,Xn.
(2) Determine the indexj ∈ {1, . . . ,m} minimizing the distanced(Yj , q). SetY = Yj .
(3) Locate the simplex containingq by traversing all simplices intersected by the line segment(Y, q).

Step (3), that is, the straight “march”, can be implemented in constant time per simplex visited, once
the initial simplex, intersected byL and incident to “starting point”Y , is determined.

Motivated by the positive empirical results of [20], where the jump-and-march (or rather, the jump-
and-walk; see also Section 6) is used to implement the randomized incremental flip algorithm to construct
3D Delaunay triangulations, this procedure was recently analyzed for the 2D case, with the result that
the expected query time is O(n1/3) when the points are randomly distributed [10]. This result, in turn,
builds on the work of Bose and Devroye [6] who prove that for any line segmentL the expected number
of intersected triangles in proportional to|L|n1/2.

In the following, both results are extended toR3, showing that the jump-and-march point lo-
cation in spatial Delaunay triangulations ofn random points has an expected running time of
O(δ(n)1/4n1/4 (logn/ log logn)3/4), whereδ(n) denotes theexpecteddegree of a Delaunay vertex. A re-
sult by Bern et al. [3] on the expectedmaximumdegree would giveδ(n) = O(logn/ log logn). On the
other hand, Dwyer [13] shows thatδ(n) = O(1) for any fixed dimensiond, under the assumption that
the points are chosen uniformly at random in ad-dimensional ball. 3D Delaunay triangulations are of
quadratic size in the worst-case. Years of “real world” usage in the mesh generation industry seem to
suggest, however, that for problems of practical relevance their size is only expected to be linear inn.
One can further argue then, thatδ(n) is expected to be constant in practice. For the jump-and-march, this
means that the expected running time will be close to O(n1/4). This compares well to the theoretically
optimal O(logn) bound, at least for practical sizes of input data; for example,n1/4/ log2n < 2.5, for n in
the range up to 107.

On a theoretical side, our work addresses and solves two difficult issues. First, when proving
“probabilistic impossibility results” for Delaunay triangulations one is naturally led to define volumes
and to argue that these volumes are likely to contain some Delaunay vertices. One must be careful though
to define (as much as possible) these volumesindependentlyfrom the vertices. We achieve this difficult
task in 3D. Second, the perturbing effect of the boundary is very well-known. The probabilistic model
of [3], for instance, was designed to analyze typical properties of Delaunay triangulations away from the
boundary. Here, we provide a specific estimate of the range of this perturbation. Our methods seem well
suited to bring even more precise results.

Outline. The paper is organized as follows. In Sections 2 and 4, we first generalize the result of [6]
regarding the intersection of a line segment with a random Delaunay triangulation to 3D. Then, we
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generalize the proof of [10] to 3D. Section 3 presents an outline of the proof. In Sections 5 and 6, we
present empirical results over randomly generated point sets ranging fromn= 1000 to 50000. Our tests
confirm that the method is efficient in practice and compares with theoretically optimal O(logn)methods,
at least in the above range, which seems to be of most relevance for practitioners in GIS and CAD.

2. Statement of results

Let C be a convex domain ofR3 and letα andβ be two reals such that 0< α < β. We say that a
probability measureP is an(α,β)-measureoverC if P [C] = 1 and if we haveα λ(S)6 P [S]6 β λ(S)
for every measurable subsetS of C, whereλ is the usual Lebesgue measure.3 An R3-valued random
variableX is called an(α,β)-random variable overC if its probability lawL(X) is an(α,β)-measure
overC. A particular and important example of an(α,β)-measureP is whenP is a probability measure
with densityf (x) such thatα 6 f (x) 6 β for all x ∈ C. One of the advantages of our more general
notion is that it allows for a probability measure charging only points with rational coordinates: this is
the case for most computer simulations. This probabilistic model was introduced in [6]. The Poisson
model of [3] is related to ours in the sense that, conditioned on the numbern of points observed over a
finite volume, the probability distribution is uniform, that is, an(α,α)-measure.

Below is our main result on the expected running time of the jump-and-march algorithm, when applied
onD, the Delaunay triangulation ofn random points inR3.

Theorem 1. LetC be a bounded convex set ofR3 and letX1, . . . ,Xn ben points drawn independently
in C from an(α,β)-measure. Then there exist constantsc1, c2 andc3 depending only uponα,β andC
such that the following holds. Assume thatm> n1/5 and that the query point is selected independently of
X1, . . . ,Xn and is at distance of at leastc1/n

1/18 from the boundary∂C. Then the expected time of the
jump-and-march algorithm is bounded by

c2mδ(n)+ c3(n/m)
1/3 logn/ log logn,

where δ(n) is the expected vertex degree of the Delaunay triangulation. In particular, the expected
time is optimized toO(δ(n)1/4n1/4 (logn/ log logn)3/4) with the choice ofm = 2(n1/4/δ(n)3/4 (logn/
log logn)3/4).

The proof of Theorem 1 rests on the following theorem.

Theorem 2. LetC be a bounded convex set ofR3 and letX1, . . . ,Xn ben points drawn independently
in C from an(α,β)-measure. Then there exist constantsc4 andc5 depending only uponα,β andC such
that the following holds. LetL be a segment inC being at distance of at leastc4(logn/n)1/3 from the
boundary∂C. LetN be the number of intersections betweenL andD. Then

E[N]6 c5 |L|n1/3 logn/ log logn.

We can easily extend Theorem 2 to the case whereL is a random segmentindependentof the n
pointsX1, . . . ,Xn. For this, define the eventB = {d(L, ∂C) > c4(logn/n)1/3}. We then haveE[N |

3 Note that the relationλ(C)6 1/α <∞ implies thatC has finite area. The convexity ofC then implies thatC is bounded
(that is, thatC is included in some finite ball).
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B]6 c5E[|L| | B]n1/3 logn/ log logn. In Section 4, we first prove Theorem 2 following the same ideas
as [6]; however, we would like to point out that the technical details are quite different in 3D and more
difficult. Given Theorem 2, it is easy to generalize the result of [10] to obtain Theorem 1.

Before presenting the proof let us clarify some rather difficult probabilistic issues underlying
our results. It is important to realize that our probability results involvetwo very different sources
of randomness. The first source of randomness is the(α,β)-measure generating the random input
X1, . . . ,Xn. In particular, the expected vertex degreeδ(n) is computed with respect to this probability
measure. The second source of randomness is the randomness introduced in step (1) of our randomized
algorithm. The expected values presented in Theorems 1 and 2 are computed over both sources of
randomness. In addition, one should realize that, in Theorem 1, the query point isnot sampled from
any fixed random distribution: this point is chosen non-deterministically. One way to express that, is to
say that the query point is selected by an adversary. The adversary can itself use randomness and can be
assumed to know the two probability distributions used in our analysis; of course, a critical restriction is
that the adversary must select the query point unaware of the realization of these distributions.

To finish, let us mention that the results of Theorems 1 and 2 can be tightened by specifying how
the constantsc1, . . . , c5 depend on the geometry ofC. In particular one could show that these constant
depend onC only through its volume and the curvature of its boundary.

3. General outline of the proof

As mentioned above, Theorem 1 is a rather simple consequence of Theorem 2. We outline first the
proof of Theorem 1. In general, the time required to walk through a segmentL is proportional to the
number of Delaunay tetrahedra crossed byL. By Theorem 2, this number is close to|L|n1/3 provided
that the segmentL is chosenindependentlyof the triangulationD. To apply this result to the walk-phase,
when one walks fromY (the point selected in the jump-phase) toq (the query point), we proceed as
follows. We consider the triangulationD′ induced by then−m points not used in the jump-phase. One
can easily show that the total time required by the walk-phase is bounded by the time to walk fromY

to q in D′, plus the total tetrahedron-degree (inD) of them pointsY1, . . . , Ym. The pointY depends
only onY1, . . . , Ym and is independent from the triangulationD′. One can therefore apply Theorem 2 and
show that the expected time to walk fromY to q in D′ is O((1/m1/3)(n−m)1/3 logn/ log logn). (The
assumptionm> n1/5 is used there.) On the other hand, the expected tetrahedron-degree (inD) of each
point Y1, . . . , Ym is equal toδ(n). As mentioned in Section 1,δ(n) = O(1) in practical situations and
always at most O(logn/ log logn). This establishes Theorem 1.

We now turn to an outline of the proof of Theorem 2. This proof is longer and requires several
technical lemmas. To bound the (expected) number of tetrahedra traversed by a segmentL, we cover
L with little balls of appropriate radius and reduce the problem to bound the (expected) numberN2 of
tetrahedra intersected by each of these ballsB(y, r). (This idea is directly inspired by [6].) To estimate
(the expected value of)N2 we introduce and analyzeN1: N1 is the number of sitesXi such that one of
the Delaunay tetrahedra incident toXi intersectsB(y, r). To connectN2 to N1 we use an extension of
a result established in [3]: with high probability, for every siteXi , the number of Delaunay tetrahedra
incident toXi is O(logn/ log logn). This allows us to derive thatE[N2] =O(E[N1] logn/ log logn).

We have reduced the original problem to the one of estimating an upper bound ofE[N1]. For this,
we consider a given siteX1 and estimate the probability that one of the Delaunay tetrahedra incident to
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X1 intersectsB(y, r): E[N1] is equal ton times this probability. Our majoration hinges on a geometric
argument: we consider a set of three little ballsA1,A2,A3 positioned at equal distance betweenX1

andy. (This set depends uponX1 andy but not uponX2, . . . ,Xn.) We show that every ball containing
X1 and intersectingB(y, r) must contain one of the three ballsA1,A2,A3. By the Delaunay empty-
ball condition, no Delaunay tetrahedron incident toX1 can intersectB(y, r) if each of the three balls
A1,A2,A3 contains a siteXj . This fact allows us to bound the probability that one of the Delaunay
tetrahedra incident toX1 intersectsB(y, r). This in turn allows us to boundE[N1], thenE[N2] and to
prove Theorem 2.

To finish we mention some thorny technical issues encountered in the proof. The main customary
argument used when proving probabilistic upper bounds for Delaunay triangulations consists of defining
volumes (usually balls), and to argue that no Delaunay site should be contained in these volumes. One
must be careful to define as much as possible these volumes independently of the Delaunay triangulation.
To achieve that purpose we introduce in Section 4.1 the notion of a “spindle”: the spindle is composed
of the three ballsA1,A2,A3. The independence of the spindle from the Delaunay triangulation is used
critically in the proof of Lemma 5.

A second difficulty comes from the fact that all three ballsA1,A2,A3 might not be fully contained
in C whenX1 is too close to the boundary ofC. The formal treatment of this situation complicates the
estimation ofE[N1] done in Lemma 5.

4. Probabilistic analysis

To denote the fact that a simplexF (edge, triangle, or tetrahedron) is part of the Delaunay triangulation
D, we write:F ∈D. For every four pointsx, y, t, z in general position we letB(xytz) be the unique ball
circumscribed to these four points. Also, for every pointx andr > 0, we letB(x, r) denote the ball of
radiusr centered at pointx.

Our arguments proceed as follows. First, we state and prove a geometric lemma (Lemma 3), which
will later be used in the proof of Lemma 5. Second, we give a set of probabilistic lemmas (Lemmas 4–7),
which, in a third step, we combine to prove Theorems 1 and 2.

4.1. A geometric lemma

This section is devoted to formally define the construction of the three ballsA1,A2,A3 and to prove
Lemma 3 stating that every ball containingX1 and intersectingB(y, r) must contain one of the three
ballsA1,A2,A3. The construction is based on a geometric object called aspindle, depending on two
parametersk1 andk2. The result of Lemma 3 depends on a third parameterk3.

For Lemma 3 we restrict the numbersk1, k2, k3 to be positive and such thatk1 + k3 <
1
2 and

3k2 + 2k3 < k1. In the proof of Lemma 5 we will impose some additional restrictions on the choice
of these three numbers.

Let l be a positive number. We define anl-spindle to be a geometric object composed of an axle
surrounded by three balls:
• The axle is a line segmentxy of lengthl.
• At q = (x + y)/2, we attach three spokes of lengthk1l. The spokes are in a plane perpendicular to the

axle; each pair of spokes forms an angle of(2π)/3.
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Fig. 1. Definingk1, k2 andk3. Segmentxy is perpendicular to the plane of the figure and hasq for its midpoint.
The figure setsl = 1; sokιl becomeskι for ι= 1,2,3.

Fig. 2. The case whereθ = π/6. Again, we setl = 1 to simplify.

• We place a ballAi at the end of each of the three spokesi = 1,2,3. These balls have radiusk2l and
their centers are at distance(k1− k2)l from q.

The collection of the three ballsA1,A2,A3 is called thewheelof the spindle.
Fig. 1 illustrates the situation. The plane of the figure (which is the plane of the spindle which contains

the centers ofA1,A2,A3) is perpendicular toxy and goes throughq. LetP2 be any plane going through
q and containingxy, and letP3 andP ′3 be the two planes parallel toP2 and at distancek3 of P2.

Let alsoθ denote the angle betweenP2 and the spoke ofA1, and consider the case whereθ = π/6. In
this case, the ballsA1 andA3 are at the same distance ofP2, namely:d(A1,P2)= d(A3,P2)

def= dmin. As
illustrated in Fig. 2,dmin= l1 sin(π/6)= l1/2. The quantitiesl1, l2 andl3 satisfy the three linear relations
l1+ l2+ l3= k1l andl3= k2l = l2 sin(π/6) allowing us to conclude thatdmin= l1/2= (k1− 3k2)l/2.

For a general value ofθ , we can easily check that there is (at least) one ballAi such thatd(Ai,P2)>
dmin and such thatAi is on same side ofP2 asP3. Symmetrically, there is (at least) one ballAj with
d(Aj ,P2) > dmin and which is on the same side ofP2 asP ′3. Therefore, the choicek3 < dmin ensures
that, for every value ofθ , there are two ballsAi andAj such thatAi is “below” P3 and such thatAj is
“above”P ′3. 4

4 The terms “below” and “above” are used for simplification and are intuitively made clear by Fig. 1.
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Fig. 3. Planeoqy is the plane of the figure (o, the center of ballB, is not drawn); it is perpendicular to the plane of
the spindleS (that is, the plane of Fig. 1). All the points depicted lie in planeoqy; pointsx,a, b, y ′ lie on ballB;
pointsx, c, d andy ′ are collinear. The shaded area representsI2.

Lemma 3. Let x, y, x1, . . . , xn be points inR3 with l = d(x, y) and let k1, k2, k3 be three positive
numbers such thatk1 + k3 <

1
2 and 3k2 + 2k3 < k1. Let S be anyl-spindle whose axle isxy and let

as beforeA1,A2,A3 be the three balls of its wheel. Finally, letD be the Delaunay triangulation of
x, x1, . . . , xn. If all three ballsA1,A2,A3 each contain a pointxj , then there exists no tetrahedron inD
incident tox which intersects (touches, crosses or contains) the ballB(y, k3l).

Proof. We begin by noting thatk1+k3<
1
2 implies that the ballsB(q, k1l) andB(y, k3l) do not intersect;

see also Fig. 3. We are going to show that every ballB havingx on its boundary and intersecting ball
B(y, k3l) must contain one of the three ballsA1,A2,A3 in its interior. This implies the lemma: assume
there exists a tetrahedronxtzw ∈ D intersectingB(y, k3l). The ballB(xtzw) circumscribed toxtzw
obviously also intersectsB(y, k3l). The prerequisite of the lemma states that each of theA1,A2,A3

contains a pointxj . As we claim, this implies thatB(xtzw) contains one of theA1,A2,A3 and thus the
correspondingxj . This contradicts the assumption thatxtzw is a Delaunay tetrahedron.

Consider therefore a ballB havingx on its boundary and intersectingB(y, k3l); let o denote its center.
Fig. 3 illustrates the situation as a projection onto the planeoqy, which is perpendicular to the plane
of S . All the points mentioned in the figure do belong to the planeoqy (but o is not represented for lack
of space). In particular, the pointx, being on the lineqy, is part of the figure. Also, lety′ be a point of
B ∩ B(y, k3l)∩Plane(oqy). 5

The radiusk3l being smaller than the radiusk1l, the line xy′ necessarily intersectsB(q, k1l); see
Fig. 3. The intersection is a segment that we denotecd. By convexity, the ballB containsxy′ and hence
also containscd. This immediately implies that the intersection of the two ballsB ∩ B(q, k1l)

def= I1 is
not empty.I1 is therefore either one of the two balls or the union of two spherical caps. The fact that
k16 k3+ k1< 1/2 implies thatx does not belong toB(q, k1l) and hence thatI1 6= B. On the other hand,
if I1= B(q, k1l) thenB contains all three ballsA1,A2,A3 and we are done.

We can therefore reduce the analysis to the case of Fig. 3: the intersectionI1 (is convex and) consists
of two spherical caps sitting on a diskC1; this disk is perpendicular to the line segmentoq (joining the
centers of the two balls) and hence perpendicular to the planeoqy of Fig. 3; the latter plane intersectsC1 in
the line segmentab. Consider now another plane, also perpendicular to the planeoqy, but containing the
line segmentxy′. This plane cutsB(q, k1l) in a disk that we denoteC2. This disk is also perpendicular
to the planeoqy which it intersects in line segmentcd. Fig. 3 illustrates that, by convexity of the arc
xaby′ , the line segmentxcdy′ does not intersect the segmentab. This implies that the two disksC1 and
C2 (which are both perpendicular to planeoqy) do not intersect. Now setI2 to be the spherical cap of

5 This intersection is not empty, becauseB intersectsB(y, k3l).
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Fig. 4. The minimal spherical capI2 cut out of the ballB(q, k1l) by the planeP0 containingx and tangent to
B(y, k3l). The plane of the picture is the planeoqy, whereo is the center ofB.

B(q, k1l) “below” disk C2, that is, the spherical cap ofB(q, k1l) cut byC2 which does not contain the
diskC1. Our discussion allows us to conclude thatI2⊆ I1.

Recall that, in the previous argument,y′ is any point inB ∩B(q, k3l)∩ Plane(oqy). Therefore, in the
case wherey belongs toB we can selecty′ to be equal toy. In that caseI2 is an hemisphere ofB(q, k1l)

(which contains trivially one of the ballsA1,A2,A3). On the other hand, ify /∈ B, thenI2 is the smaller
of the two spherical caps determined byC2.

Summarizing all the previous discussion, we have established so far that, ifB is a ball havingx on
its boundary and intersectingB(y, k3l), then there exists a planeP containingx, intersectingB(y, k3l),
and such that the intersectionB ∩ B(q, k1l) contains the smaller of the two spherical caps cut out of
B(q, k1l) by P. Furthermore, it is clear that we can restrict ourselves to the case whereP is tangent to
B(y, k3l); this corresponds to the case where the spherical capI2 is minimal among all spherical caps cut
by planes containingx and intersectingB(y, k3l). We can therefore rewrite the preceding summary as
follows: LetB be any ball havingx on its boundary and intersectingB(y, k3l). Then there exists a plane
P0 containingx and tangent toB(y, k3l) such that the intersectionB ∩ B(q, k1l) contains the smaller of
the two spherical caps cut out ofB(q, k1l) by P.

Fig. 4 illustrates the new situation.P0 is such a plane tangent toB(y, k3l), andI2 is the smaller of the
two spherical caps thatP0 cuts offB(q, k1l). Now letP2 be the plane perpendicular to the planeoqy
(the plane of the figure) which contains the linexqy, and letP3 be the plane parallel toP2 and tangent
to B(y, k3l); obviously, the distance fromq to P3 is equal tok3l. Finally, letP1 denote the plane that
containsq and is perpendicular toP2. Note thatP1 is also the plane of Fig. 1 defined by the centers of
the three ballsA1,A2 andA3 of the spindleS . Moreover, the planesP2 andP3 intersectP1 as indicated
on Fig. 1.

To come to a conclusion, letI3 denote the smaller of the two spherical caps cut byP3 into B(q, k1l).
Our earlier choices fork1, k2, k3 imply thatI3 contains at least one of the three ballsA1,A2,A3 of the
spindleS . SinceI3⊆ I2⊆ I1, we established that the ballB contains at least one of the three balls of
the spindle, and Lemma 3 is proven.2

4.2. A set of probabilistic lemmas

In order to prove the theorems, we need a set of probabilistic lemmas. The proof of Lemma 5 hinges
critically on Lemma 3.
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Fig. 5. For every pointy of a convex solidC and every smallr, C contains a spherical cone of radiusr and of solid
angleθ issued fromy.

Lemma 4. LetX1 be a random variable drawn from an(α,β)-measure over a bounded convex setC.
Then there exist constantsr0> 0 andγ > 0 such that for everyr 6 r0,

inf
y∈C P

[
d(X1, y)6 r

]
> γ r3.

Proof. By convexity ofC there exists a distancer0 and a valueθ 6 4π such that the following holds.
Let y be any point inC. Then there exists a spherical coneC with summity, radiusr and solid angleθ
such thatC is included inC; see Fig. 5. The volume Vol(C) of this cone is(θ/4π)r3. Therefore, ifX1 is
a random variable drawn from an(α,β)-measure overC, we have

P
[
d(X1, y)6 r

]
> P [X1 ∈ C ] > αVol(C)= α θ

4π
r3. 2

In the following, we denote the set of all Delaunay tetrahedra incident to a pointXi by TXi . Lemma 5
estimatesN1, the number ofXi ’s such thatTXi intersectsB(y, r); in other words, the number ofXi ’s with
the property that at least one of its incident Delaunay tetrahedra intersectsB(y, r). With this, Lemma 6
will estimate the number of Delaunay tetrahedra intersectingB(y, r).

Lemma 5. Considern pointsX1, . . . ,Xn drawn independently from an(α,β)-measure over a bounded
convex setC. Then there exist positive constantsa, b, c and d, depending uponα,β andC only, such
that the following holds. Lety be any point inC at distancea(logn/n)1/3 from the boundary∂C and
r 6 1/2d(y, ∂C) be a positive quantity. LetN1 denote the number ofXi ’s with the property that one of
the tetrahedra inTXi intersectsB(y, r). Then

E[N1]6 b+ c r2n2/3+ d nr3.

Proof. By linearity of the expectation,E[N1] = np, wherep is the probability that one of the Delaunay
tetrahedra incident toX1 intersectsB(y, r). Let L = d(X1, y); L is itself a random variable. In the
following we condition on the value ofX1. The pointsX1 andy are then fixed, and we letSX1 be any
L-spindle whose axle isX1y. (Hence the angleθ of Fig. 1 is arbitrary but fixed.) As before,A1,A2,A3

denote the 3 balls of the wheel. Remark that the event{SX1 ⊆ C} = {the 3 balls of the spindleSX1 are
included inC}.

In the following, let eventB1 = {SX1 ⊆ C, k3L > r}. Note that the relationk3L > r implies thatX1

does not belong toB(y, r). The first inequality is therefore a direct consequence of Lemma 3. In the third
inequality,1k2L6r0 denotes the random variable equal to 1 whenk2L6 r0 and 0 else.
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P
[
TX1 intersectsB(y, r) |X1, B1

]
6 P

[
one of the 3 ballsA1,A2,A3 contains no pointX2, . . . ,Xn |X1, B1

]
6

3∑
j=1

P
[
Aj contains none of the pointsX2, . . . ,Xn |X1, B1

]

=
3∑
j=1

n∏
i=2

P
[
Xi /∈Aj |X1, B1

]
(1)

6 3E
[(

1− γ (k2L)
3)n−1

1k2L6r0 |X1, B1
]+ 3E

[(
1− γ r3

0

)n−1
1k2L>r0 |X1, B1

]
.

Eq. (2) is a consequence of the (conditional) independence of the eventsXi /∈Aj . This independence
comes both from the fact that the random variablesXi are independent and the fact that the 3 balls
A1,A2,A3 are definedindependentlyof the pointsX2, . . . ,Xn. The necessity of this last independence
is not always recognized and leads to frequent mistakes in the literature.

We now justify the last inequality. Note first that, by Lemma 4,γ (k2L)
3 6 1 whenk2L 6 r0. The

expression(1− γ (k2L)
3)n−1 is therefore well-defined. The conditioning onSX1 ⊆ C ensures that each

ball Ai is fully contained inC. This implies in particular that the centeryi of each ballAi is in C. We
can then apply Lemma 4 (which determines the valuesγ andr0) using the fact that the random variables
Xi are all drawn independently according to an(α,β)-measure.

We letB1= {k3L< r} ∪ {SX1 6⊆C} denote the complement ofB1. Integrating the previous majoration
of P [TX1 intersectsB(y, r) |X1,B1] with respect toX1 therefore gives

p=P [TX1 intersectsB(y, r), B1
]+ P [TX1 intersectsB(y, r), B1

]
6P

[
k3L< r

]+ P [TX1 intersectsB(y, r), SX1 6⊆C
]+ 3E

[(
1− γ (k2L)

3)n−1
1k2L6r0 1k3L>r

]
+3
(
1− γ r3

0

)n−1
P
[
k2L> r0; k3L> r

]
def= I + II + III + IV .

The fact thatX1 is drawn from an(α,β)-measure implies thatI = P [k3L < r
]
6 (4/3) β π(r/k3)

3.

Also IV 6 3e−(n−1)γ r3
0 , which is exponentially small withn sufficiently large. We now turn to III.

Note first that(1− γ (k2L)
3)n−1 1k2L6r0 6 e−(n−1)γ (k2L)

3
and therefore, III6 3E[e−(n−1)γ (k2L)

3
1k3L>r ].

To estimate this expression we use spherical coordinates and obtain

III 6 16π2β

(
2

3(n− 1)k3
2γ
+ 2r2

k2k
2
3(γ (n− 1))1/3

1

3
Γ

(
1

3

))
.

We now turn to expression II= P [TX1 intersectsB(y, r), SX1 6⊆ C ]; its majoration will involve
showing that only verticesX1 within distance O((logn/n)1/3) of y have a Delaunay tetrahedron
extending toy. Furthermore, the conditionSX1 6⊆ C implies that the spindle is in the vicinity of the
boundary∂C of C, which appears to be flat at the very small distance O((logn/n)1/3) that we consider.
This allows us to model∂C locally to be a planeP: C appears locally like a half-planeU .

To simplify we setK = 2k1 and recall thatK < 1−2k3< 1. Recall also that we definedSX1 to be any
arbitrary, externally fixed, spindle whose axle isyX1: SX1 is not uniquely determined byX1 but also by
the angleθ of Fig. 1. For everyX1 defineS ′X1

to be the 3-dimensional “tire” span bySX1 when rotating
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Fig. 6. A spindleS ′′x0
crossingP .

around its axle.S ′X1
is uniquelydetermined byX1 (along withy,K) and containsSX1 so that, clearly,

{SX1 6⊆ U } ⊆ {S ′X1
6⊆ U }. To further simplify, introduceS ′′X1

to be the following (simpler) object.S ′′X1
is

composed of (i) the axleX1y, and (ii) a circle of diameterK, thewheel, perpendicular toX1y whose
center is the mid-pointq ofX1y. We sometimes writeS ′′X1

(K) to emphasize the value ofK. Furthermore,
let P be a plane such thaty /∈P, letU denote theP-half-space to whichy belongs, and leth denote the
distanced(y,P) from y to P. We only consider pointsX in U and say that the spindleS ′′X1

crossesP if
its wheel crossesP. As before, we setL= d(X1, y).

Claim.
(a) S ′′X1

(K) crossesP only ifL> L0(h)
def=√1+ 1/K2h.

(b) If K 6 0.2 then{S ′X1
(K) 6⊆U } ⊆ {S ′′X1

(1.02K) 6⊆U }.
We just show (a). Assertion (b) implies that, fork1 small enough, a minute adjustment ink1 allows to

consider{S ′′X1
6⊆U } in place of{S ′X1

6⊆U }.
Consider a given value ofL and assume that anL-spindleS ′′x1

crossesP. Letm be a point on the wheel
“below” P; see Fig. 6. Note thatk1 < 1/2 implies thatd(y,P)6 d(y,m)= (d(y, q)2+ d(q,m)2)1/2<
L/
√

2. This implies that there exists a pointx0 ∈ P and such thatd(y, x0) = L. (This point can be
obtained by rotating the spindle aroundy.) ConsiderS ′′x0

, the spindle associated tox0. The fact thatS ′′x1

crossesP implies thatS ′′x0
similarly crossesP. (We provide a pictorial justification of this fact. Consider

the rotation of the spindle aroundy in the plane of Fig. 6: we letφ denote the angle betweenym and
the vertical line;φ1 is the angle corresponding to the initial pointx1; φ0 is the angle corresponding tox0;
we also letm1 andm0 denote the positions ofm associated respectively tox1 andx0. Obviously,m goes
“deeper” belowP asφ ∈ [0,π] decreases to 0. Asd(y, q) > d(q,m) the angleφ0 belongs to[0,π/2].
Thereforem0 is deeper belowP thenm1.)

To prove impossibility results we can therefore restrict ourselves tox ∈ P. Consider such anx. The
fact thatS ′′x crossesP implies thatd(q,m)= k1L>L/2 tanθ whereθ = arcsin(h/L). This immediately
impliesL2> ((1+K2)/K2)h2. We are now ready for the majorations below.

P
[
S ′′X1
6⊆U, TX1 intersectsB(y, r)

]
= P [S ′′X1

6⊆U, ∃Xi2,Xi3,Xi4 such thatX1Xi2Xi3Xi4 ∈D
and such thatX1Xi2Xi3Xi4 ∩B(y, r) 6= ∅

]
6 max

y ′∈B(y,r)
P
[∃Xi2,Xi3,Xi4;d(X1, y)>L0(h), X1Xi2Xi3Xi4 ∈D, y′ ∈ B(X1Xi2Xi3Xi4)

]
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Fig. 7. The coneC contained in everyB(xtzu), containingy ′ and such thatd(x, y ′)>L0(h).

6 max
y ′∈B(y,r)

(
n− 1

3

)
P
[
d(X1, y)> L0(h), X1X2X3X4 ∈D, y′ ∈ B(X1X2X3X4)

]
6 max

y ′∈B(y,r)
n3

6

∫
Ty′

dPX1,X2,X3,X4(x, t, z, u)
(
P
[
X5 /∈ B(xtzu)]n−4)

,

where Ty ′
def= {(x, t, z, u) ∈ U4; d(x, y) > L0(h) and y′ ∈ B(xtzu)}, and PX1,X2,X3,X4 denotes the

probability law of the random variable(X1,X2,X3,X4).
We now compute an upper-bound for the expressionP [X5 /∈ B(xtzu)] when the pointsx, t, z, u

of U are such thatd(x, y) > L0(h), and such thaty′ ∈ B(xtzu). We defineK ′ def=√1+ 1/K2. Hence
L0(h)=K ′h. We also setK ′′ def= 2K ′ − 1. We need the following claim.

Claim. If d(x, y)> L0(h) andy′ ∈ B(xtzu)∩B(y, r) then

Vol
(
B(xtzu)∩U)> π

24

(
K ′′2

1− 1/K ′′2

)1/2

h3 def= c′h3.

The situation is presented in Fig. 7. The ballB(xtzu) cuts minimallyU only (i) whenx is on the
boundaryP, (ii) wheny′ is on the boundary ofB(xtzu), and (iii) when the centero of B(xtzu) is such
that the planexoy′ is perpendicular toP. We therefore consider the situation within planexoy′ , as in
Fig. 7.

The centero is located on the linel perpendicular toy′x and going through the mid-pointa of y′x.
Let b be the intersection ofl with P. Consider the coneC issued fromb and whose base is the circle with
diametery′x. We claim thatC is included in the ballB(xtzu) cutting minimallyU . (i) This ballB(xtzu)
must have its centero belowa: if not, at least half ofB(xtzu) is in U . (ii) If o is underb, thenb is in
the convex hull of the 3 pointsy′, x, o. All 3 points y′, x, o are inB(xtzu) and hence so isb. B(xtzu)
then clearly containsC. (iii) If c belongs to the segmentab thend(o, b)6 k1L< L/26 d(o, y′). Thus,
if o ∈ [a, b] thenb ∈ B(xtzu) andB(xtzu) containsC as before.

This shows thatv def= Vol(B(xtzu) ∩U)> Vol(C). Using the fact thatd(y, y′)6 r 6 h/2, we find that
v is at least equal to(π/3)(L′/2)3 tan(θ ′/2), whereh′ def= h− h/2= h/2,L′ def= L0(h)− h/2=K ′′h′ and
whereθ ′ = arcsin(h′/L′). We obtainv > c′h3, where

c′ = π

24

(
K ′′2

1− 1/K ′′2

)1/2

,

and have thus proven
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P
[
S ′′X1
6⊆C, TX1 intersectsB(y, r)

]
6 n

3

6

(
1− c′αh3)n−46 n

3

6
e−(n−4)c′αh3

.

Selecting

h(n)=
(

4

c′α
logn

n

)1/3

gives II=O(1/n), as needed. Then, multiplying byn the bounds found for I, II , III and IV and summing
establishes the result, and concludes the proof of Lemma 5.2

Lemma 6. Under the hypothesis of Lemma5,

E[N2]6 e(b+ cr2n2/3+ dnr3) logn/ log logn,

whereN2 is the number of Delaunay tetrahedra that intersectB(y, r) and wheree is a constant
depending solely onC,α andβ.

To prove this, we need the following result, very similar to the result derived in [3, Theorem 7].

Lemma 7. There exists a constantc′′ such thatP [do(X1) > c
′′ logn/ log logn]6 1/n4. Therefore,

P
[∃i, do(Xi) > c′′ logn/ log logn

]
6 1/n3.

Proof. The proof of this result follows very closely the proof for the Poisson model given in [3,
Lemmas 8 and 9]. The only technical difference is that they bound the first probability by 1/n2 instead
of 1/n4. We show here that 1/n4 is similarly valid. A careful reading of their proof shows that we
only need to establish that, with probability at least 1− 1/n4, the maximum Delaunay edge length is
O((logn/n)1/3). 6

We compute

P
[
d(X1,X2)> h; X1X2 ∈D]6P [d(X1,X2)> h; ∃i3, i4 such thatX1X2Xi3Xi4 ∈D

]
6 n2(1− γ (h/2)3)n−d−16O

(
n2e−γ (h/2)

3n
)
.

Therefore,P [∃Xi1Xi2 such thatd(Xi1,Xi2)> h andXi1Xi2 ∈D]6 O(n4e−γ (h/2)3n). This is o(1/n4) if

h >

(
32

γ

logn

n

)1/3

. 2

Proof of Lemma 6. By Euler’s formula, there is a constantK such that the tetrahedron-degree is
equal toK times the edge-degree. For convenience, assume thatB2 denotes the event{∀i, do(Xi) 6
c′′ logn/ log logn}, which is identical to the event{∀i, tetrahedron-do(Xi)6Kc′′ logn/ log logn}. Then,
from Lemma 7 it follows thatP [B2] 6 1/n3 and we haveE[N2] = E[N2;B2] + E[N2;B2]. The two
termsE[N2; B2] andE[N2; B2] need to be bounded separately. We begin withE[N2;B2]:

6 Theorem 1 of [3] establishes that the maximum edge length is at most O((logn)1/3) with high probability. Our additional
factor 1/n1/3 comes from the fact that they consider a cube of variable side length 1/n1/3.
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E[N2; B2] =P [B2],E[N2 | B2]
6Kc′′P [B2]E[N1 | B2] logn/ log logn

=Kc′′E[N1; B2] logn/ log logn

6Kc′′E[N1] logn/ log logn

6Kc′′
(
b+ cr2n2/3+ dnr3) logn/ log logn.

On the other hand,

E
[
N2; B2

]
6O

(
n2)P [B2

]
6O

(
n2) 1

n3
= o(1). 2

Corollary 8. Consider n points X1, . . . ,Xn drawn independently from an(α,β)-measure over a
bounded convex setC. Then there exist positive constantsa, b, c, d and e, depending uponα,β andC
only, such that the following holds. Lety be any point inC at distancea(logn/n)1/3 from the boundary
∂C. Let r, r 6 a/(2n1/3) be a positive quantity. LetN2 denote the number of Delaunay tetrahedra that
intersectB(y, r). Then

E[N2]6 e(b+ c(a/2)2+ d(a/2)3) logn/ log logn.

4.3. Summing it all up

We are ready to prove the theorems.

Proof of Theorem 2. We setc1= a, wherea is the constant of Lemma 5 and Corollary 8. The segment
L may be covered byd(|L|/a)n1/3e circles of radiusa/(2n1/3) each and centered on pointsyi of L.
The numberN of intersections betweenL and the Delaunay triangulation is bounded by the sum of the
number of intersections with these circles. By Corollary 8, the expected number of intersections with
each of these circles is bounded byK logn/ log logn for some constantK depending uponα,β andC
only. Hence,

E[N]6K
⌈ |L|
a
n1/3

⌉
logn/ log logn6K

(
1+ |L|

a
n1/3

)
logn/ log logn,

which proves Theorem 2.2

Proof of Theorem 1. We have in mind to apply Theorem 2 to the segmentL= qY . We are faced with
two difficulties. First, bothY andL are defined in terms ofY1, . . . , Ym and are therefore not independent
of X1, . . . ,Xn. Second,Y can possibly be within distancec4(logn/n)1/3 from the boundary∂C. We will
solve the first difficulty by considering a slightly different Delaunay triangulation with respect to whichL

is independent. We will solve the second difficulty by showing thatY is with high probability at distance
of at leastc4(logn/n)1/3 from ∂C.

Let us first recall thatq andY are defined in very different ways. The condition that they be “far
enough” from the boundary must therefore be handled differently. The query pointq is not in the control
of the algorithm. It is instead decided externally and the algorithm is claimed to perform well for all
admissible choices ofq. Thus, the assumption “q is at distance of at leastc1/n

1/18 from ∂C” is merely a
restriction on the set of query points against which the algorithm has to measure. On the other hand, the
point Y is chosen randomly, as described in the algorithm in Section 1. The fact that “Y is at distance of
at leastc4(logn/n)1/3 from ∂C” cannot therefore be imposed externally.
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Let us relabel{X1, . . . ,Xn} − {Y1, . . . , Ym} into {X′1, . . . ,X′n−m}. As usual, letD denote the Delaunay
triangulation associated to then points X1, . . . ,Xn, and letD′ denote the Delaunay triangulation
associated to then − m pointsX′1, . . . ,X′n−m. The random variablesX′1, . . . ,X′n−m are independent
from the random variablesY1, . . . , Ym. This implies that, for every query pointq, (X′1, . . . ,X′n−m)
is independent fromY , which allows us to make the following two conclusions. First,L

def= (Y, q),
the line segment connectingY and q, is independent of then − m data points definingD′.
Second, the probabilistic behavior ofX′1, . . . ,X′n−m is unaffected when conditioning on the event
B3

def= {d(Y, ∂C) > c4(logn/n)1/3}. In formal terms, the probabilistic lawL(X′1, . . . ,X′n−m) is equal
to the conditional lawL((X′1, . . . ,X′n−m) | B3). In particular, the random variablesX′1, . . . ,X′n−m are
independent identically distributed(α,β)-random variables under the conditional probability distribution
P [· | B3].

Let N denote the number of tetrahedra inD′ crossed byL. We haveE[N] = E[N;B3] + E[N;B3]
whereB3 denotes the complement ofB3. We provide upper bounds for the two termsE[N;B3] and
E[N;B3].

We begin withE[N;B3]. It is well known thatN =O(n2). HenceE[N;B3]6O(n2)P [B3]. We fixc to
be a constant such that, for everyn, c4(logn/n)1/36 (c/2)(1/n)1/18. Recall thatP [B3] = P [d(Y, ∂C) <
c4(logn/n)1/3] and that, by assumption,d(q, ∂C) > c(1/n)1/18. By triangular inequality, this implies
that

P
[
B3
]
6P

[
d(Y, q)> c

2

1

n1/18

]
=
(
P

[
d(Y1, q)>

c

2

1

n1/18

])m
=
(

1−P
[
d(Y1, q)6

c

2

1

n1/18

])m
6 e−mP [d(Y1,q)6(c/2)(1/n1/18)]

6 e−n
1/5α(4π/3)(c/2)3(1/n1/6) = o

(
1/n2).

This shows thatE[N; B3] = o(1). We now turn toE[N;B3] = E[N | B3]P [B3]. Theorem 2 (see
the remark after Theorem 2), along with the fact thatX′1, . . . ,X′n−m are (α,β)-random variables,
independently identically distributed under the measureP [· | B3], implies that

E[N | B3]6 c4+ c5E
[
d(Y, q) | B3

]
(n−m)1/3 logn/ log logn.

Hence,

E[N;B3]6 c4P [B3] + c5E
[
d(Y, q); B3

]
(n−m)1/3 logn/ log logn

6 c4+ c5E
[
d(Y, q)

]
n1/3 logn/ log logn.

The estimation ofE[d(Y, q)] is done as in [10]. The beginning of the argument is similar to the
estimation ofP [B3 ] above. Lemma 4 is then used. We let diam(C) denote the diameter ofC. Note that
Y andq are inC so thatP [d(Y, q) > t] = 0 if t > diam(C).

E
[
d(Y, q)

]= ∞∫
0

P
[
d(Y, q) > t

]
dt 6

∞∫
0

e−mP [d(Y1,q)6t ] dt 6
r0∫

0

e−mαγ t
3
dt +

diam(C)∫
r0

e−mαγ r0
3
dt

6
∞∫

0

e−mαγ t
3
dt + diam(C)e−mαγ r0

3 =O
(

1

m1/3

)
.
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We have therefore shown thatE[N] =O((n/m)1/3 logn/ log logn).
Ntotal, the total number of tetrahedra inD crossed byL, is not more than that forD′, that is, aboveN ,

plus the sumS of the tetrahedra degrees of (that is, the number of tetrahedra adjacent to)Y1, . . . , Ym in
the Delaunay triangulationD. To see this, note thatL either crosses a tetrahedron without one of theYi ’s
as a vertex (in which case the tetrahedron is both inD andD′) or one for whichYi is a vertex (in which
case the tetrahedron is inD but not inD′). The total number of the latter kind of tetrahedra does not
exceedS. The expected value ofS is, by linearity of expectation, 3m times the expected (vertex) degree
δ(n) of Y1, where the constant 3 results from Euler’s formula. Combining all this we have

E[Ntotal] =O
(
(n/m)1/3 logn/ log logn+mδ(n)).

The time complexityT of the jump-and-march algorithm in Section 1 is proportional tom + Ntotal;
the sample sizem comes into play because of steps (1) and (2),Ntotal is due to step (3).E[T ] can
thus be optimized to O(δ(n)1/4n1/4(logn/ log logn)3/4) with the choice ofm = 2(n1/4/δ(n)3/4(logn/
log logn)3/4). 2

5. Empirical results in 2D

This section presents some empirical results on the planar jump-and-march, or better, a variation of it.
For further convenience, we samplen1/3 edges of the Delaunay triangulationD, rather than points. Then,
we choose the edge whose midpoint has minimum distance to the query pointq. We find the triangle
containingq by traversing the triangles intersected byL= (y, q), wherey is the midpoint of the initially
chosen edge.

We tested this procedure for random point sets of sizen = 1000, 2000,. . . , 50000; the coordinates
were chosen randomly out of the unit square. In Figs. 8(a) and (b),Mn denotes the sample mean of
the number of triangles visited, over a sample of 999 queries, and for one random point set of sizen,
for eachn; the coordinates ofq (and the point set) are chosen by random out of the unit square. Thus,
Mn corresponds to theE[Ntotal] in the analysis. Since2(logn) is the best known theoretical bound for
planar point locations; see, for example, [21], Fig. 8(c) plots the ratioMn/ log2n to give a measure for

(a) (b) (c)

Fig. 8. (a) The sample meanMn of the number of triangles visited, for a sample of 999 random query pointsq for
each data set of sizen. (b) The ratioMn/n

1/3. (c) The ratioMn/log2n.
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the efficiency of the method. Note that the best known planar point location algorithm [12] is obtained
by two binary searches, one horizontally and one vertically, thus has at least a constant of 2 in front of
the log2n.

6. Empirical results in 3D

How does the jump-and-march perform in 3D? Again, we implement a slight variation of the procedure
analyzed in this text; the empirical studies listed here, but also in the context of incremental Delaunay
triangulators [20], justify this. In order to discuss the procedure, it helps to have the concept of anoriented
triangle τ . In essence, it is given by the (ordered) sequence of its vertices. The vertices then define (the
underlying plane with) a normal vector pointing, by definition, to the triangle’spositive side, denoted by
τ+. Linear algebra dictates that a triangle has two distinguishable orientations.

With this, our variant, thejump-and-walk, works as follows. First, we sample triangles rather than
vertices. The sample size is set tom=O(n1/4), for Delaunay triangulations ofn points. The “distance”
of a triangle to the query pointq is calculated as the minimum distance of its three vertices toq. The
triangleτ0 which scores with the shortest distance is selected. We adjust its orientation such thatq is on
its positive side, that is,q ∈ τ+0 . The selection ofτ0 constitutes the “jump” part of the algorithm.

Second, we perform the following loop, which implements the original “walking” strategy mentioned
in the introduction. The loop has the invariant thatq ∈ τ+.
(1) If τ is a convex hull triangle andτ+ is outsideD, thenq lies outsideD.

Exit loop.
(2) Otherwise, there is a tetrahedron inD incident toτ (and inτ+).

If this tetrahedron containsq, exit loop.
(3) Otherwise, select a triangleσ of the tetrahedron, such that,q ∈ σ+.
(4) Setτ = σ , and continue loop at (1).

Each iteration of this loop corresponds to a tetrahedron visited. Again, note that this procedure is only
guaranteed to terminate for Delaunay triangulations since they are proven to be “acyclic for any fixed
viewpoint” [14]. For arbitrary triangulations, this is not necessarily the case; however, if the selection
of σ in (3) is done by random (out of the up to 3 possibilities), then the infinite loop is broken with
probability arbitrary close to 1.

In terms of the number of tetrahedra visited, jump-and-walk can obviously be only worse than jump-
and-march. However, orientation tests in 3D are computationally less involved than intersection tests;
and this is particular true, if the implementation emphasizes robustness. Therefore, it is not surprising
that experiments reveal the jump-and-walk to actually run faster in practice.

For our experiments, we generated 5 random 3D point sets for eachn = 1000, 2000,. . . , 50000.
Each data set was then queried with 9999 random points, using the jump-and-walk algorithm. We chose
m = 7n1/4 for the random sample. This was empirically determined to be the best choice with respect
to actual CPU time. It is obvious that the largerm, the smaller the number of tetrahedra visited in the
walk. Form= 2n1/4, these numbers roughly balance. However, it makes sense to increasem, because the
sampling of a triangle in the jump phase is computationally less expensive than the visit of a tetrahedron
while walking towards the query point. This is so in particular because care has to be taken to implement
the walk robustly, for example, using symbolic perturbation and exact arithmetic.
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Fig. 9. (a) The sample meanMn of the number of tetrahedra visited, for a sample of 9999 random query points
q for a random point set of sizen. The plotted valueMn reflects the worst mean out of 5 random point sets for
eachn. (b) The ratioMn/n

1/4. (c) The ratioMn/log2n.

For each of the 9999 query points we count the number of tetrahedra visited and take the mean.
This gives us 5 sample mean values for eachn; Fig. 9(a) plotsMn, that is, the largest of the 5. The
corresponding 90% confidence intervals were consistently smaller than±1%. Here, we say that the
sample mean̂µ has a 90%confidence intervalof ±H% if the interval[µ̂(1−H/100), µ̂(1+H/100)]
contains the real meanµ with probability at least 90%.

Fig. 9(b) plots the ratioMn/n
1/4. It indicates that the constants in our analysis are low, that is, less than

1.6. Moreover, the method compares well with the theoretically best possible O(logn), which assumes
both preprocessing and additional storage. Fig. 9(c) plotsMn/log2n and shows that, for the observed
range ofn, the number of visited tetrahedra stays well under 2.1 log2n.

7. Closing remarks

Point location by walking through a triangulation is used in the practice of geometric computing
for years, and with excellent empirical results; in particular in 2D or 3D mesh generation; see,
for example, [22] or [5,16,24], respectively. More recently, following the original conference presentation
of this work, marching or walking through triangulations or subdivisions is finally also finding the
attention of the more theoretical computational geometry community; see, for example, [1,9,17].

In this paper, following the strict requirement of no additional storage, and by simulating bucketing
via random sampling, we enhanced the procedure to what we call the jump-and-march. We were able to
show that the new procedure has an expected running time of O(n1/4) when applied to the 3D Delaunay
triangulation of a uniformly distributed random point set of sizen. Our own empirical tests verify this;
in fact, the relaxed jump-and-walk procedure, which is even easier to implement, performs as good, or
even better in terms of actual running time. Experiments with nonrandom data show similar results [20].
Our work justifies a procedure which is often used in the “real world” and even suggests a simple yet
effective improvement.

Our work raises several interesting questions both theoretical and empirical.
(1) Our result shows that the method requires expected time close to O(n1/(d+1)) for d = 3 dimensions. It

would be very interesting to settle whether the method performs equally well for higher dimensions.
Two things are required to adapt our proof to higher dimensions. First, in order to extend our
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Lemma 5 and bound the expected value ofN1, one needs to define appropriately a “d-dimensional
spindle”: this geometrical object is composed ofd balls whose centers are on ad − 1-sphere
positioned on the hyperplane betweenX1 andy. A critical step is to provide ad-dimensional version
of our Lemma 3. Second, one needs to provide ad-dimensional replacement to the Euler argument
that allowed us to relateN2 to N1. A complete different approach might be possible. Indeed, we
believe that our results can be tightened and that

(2) in all our results the logn/ log logn terms can be removed.
(3) Our results make explicit the perturbing influence of the boundary. The proof of Lemma 5 required

to identify locally the boundary∂C to a plane. It would be very interesting to quantify this in terms
of the curvature of∂C.

(4) It would be extremely interesting to know how the method performs on non-Delaunay triangulations.
(5) Finally, it would be very interesting to construct an adaptive version of our algorithm in the context

where many query points are considered. One possibility would be to incrementally improve the
data-structure as more and more query points are located. This would allow to select them points of
phase (1) in a more optimal way than purely random, resulting in a pointY closer to the query point.
The improved algorithm could be analyzed via amortized analysis.
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