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Abstract

This paper studies the point location problem in Delaunay triangulations without preprocessing and additional
storage. The proposed procedure finds the query point by simply “walking through” the triangulation, after
selecting a “good starting point” by random sampling. The analysis generalizes and extends a recent result for
d = 2 dimensions by proving this procedure takes expected time clos@t6'® 1) for point location in Delaunay
triangulations of: random points in/ = 3 dimensions. Empirical results in both two and three dimensions show
that this procedure is efficient in practice 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Point location is one of the classical problems in computational geometry and has various applications
of practical relevance, for example, in the areas of geographic information systems (GIS) or computer-
aided design and engineering (CAD/CAE). The problem is well studied in the computational geometry
literature and several theoretically optimal algorithms have been proposed; see for example, Snoeyink’s
recent survey [23]. Unfortunately, algorithms that are optimal in theory do not necessarily yield to good
practical performance. This is also true in the case of point location, mainly because of the necessary
preprocessing time and additional storage requirements.

Actual engineering implementations often use tree structures to guide the point location, for example,
the “alternating digital tree” of Bonet and Peraire [4], which typically come very close to the theoretically
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optimal logarithmic time complexity of the problem. However, all these methods require a certain amount
of preprocessing for the creation of additional data structures (and their maintenance, for the dynamic
version of the problem). “Bucketing” algorithms, see, for example, Asano et al. [2], can even achieve
constant search time, on average, for uniform distribution, for input in a bounded domain, but they, too,
require extra preprocessing, especially within each bucket, and additional storage. Here, we will discuss
a technique that is efficient in practice, usegpreprocessing timeo additional storage, and, as a bonus,
could not be easier to implement.

Point location, in its full generality, deals with the following problem: given a set of disjoint geometric
objects, determine the object containing a query point. The literature often restricts the objects to cells
of subdivisions of geometric regions. This work focuses even further on point location within the
triangles or tetrahedra of triangulations of 2D and 3D point sets; in fact, the actual analysis is restricted
to Delaunay triangulations of random points. The focus on triangulations is justified since regions of
arbitrary subdivisions can be triangulated. Moreover, the query problem in triangulations itself occurs
quite frequently in practice; for example, in mesh generation and finite-element analysis (FEA).

Delaunay triangulations. For completeness, we briefly include the following definitions. €havex
hull of a finite point seiX is the smallest convex set containiiig The convex hull of a set df+ 1 affinely
independent points iR, for 0 < k < d, is called ak-simplex; that is, a vertex, an edge, a triangle, or
a tetrahedron, etc. & = d, we also say the simplex fsll dimensional A triangulation 7 of X is a
subdivision of the convex hull of consisting only of simplices with the following two properties: (i) for
every simplex in7, all its faces are also simplices ¥, (ii) the intersection of any two simplices 1A is
either empty or a face of both, in which case it is again a simpleéX.iA Delaunay triangulatiorD of

X is a triangulation in which the circumsphere of each full-dimensional simplex has no poiits ats
interior.

Point location by walking. The basic idea is straightforward and not at all new; it goes back to early
work on constructing Delaunay triangulations in 2D and 3D [7,18]. Given a Delaunay triangufation

of a setX of n points inR¢, and a target poing; in order to locate the (full-dimensional) simplex

in D containingg, start at some arbitrary simplex # and then “walk” from simplex to neighboring
simplex “in the general direction” of the target pointThe underlying assumption is that theis given

by an internal representation allowing constant-time access between neighboring simplices. The list of
suitable data structures includes the 2D quad-edge data structure [19], the edge-facet structure in 3D [11]
its specialization and compactification to the domain of 3D triangulations [20], or its generalization to
d dimensions [8].

A pseudo-code for the simple “walking” method in 2D can be found in [19]. This procedure is
guaranteed to terminate only in Delaunay triangulations. For arbitrary triangulations it may go into an
infinite loop; see, for example, [15]. However, the infinite loop can be broken, for all practical purposes,
by introducing randomness when selecting which neighboring simplex to visit next; see Section 6.

The “walking” method has been ignored by most theoreticians in computational geometry since not
much can be said about its performance theoretically, other than it is “expected” to take time proportional
to n*/¢ when the points are randomly distributed [18,7]. However, because of its exceptional simplicity,
the method is often used by practitioners in the geometric computing community, in particular, in mesh
generation for FEA.
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Jump-and-march. In the following, we modify the method somewhat. First, we “march” towayds

by strictly traversing the simplices intersected by a line segnierdtarting at a vertex of the initial
simplex, and ending in. This makes it easier to analyze the procedure (and trivially eliminates the above
mentioned infinite-loop problem); although, as discussed empirically in Section 6, it seems to reduce the
expected number of visited simplices only marginally, and actually degrades the actual performance.
Second, we “jump” to a good starting point via random sampling on the poifikseXo, ..., X,}. This
enhances the overall procedure significantly; in a sense, we are simulating the effects of the bucketing
approach by random sampling.

Given the Delaunay triangulatio®® of thesen points {X1, Xo, ..., X,,}, and a query poing, the
following procedure locates the simplexBfcontainingg, if such a simplex exists.

(1) Selectn pointsYy, ..., Y, atrandom and without replacement frof, ..., X,,.
(2) Determine the index € {1, ..., m} minimizing the distancé(Y;, ¢). SetY =Y.
(3) Locate the simplex containingby traversing all simplices intersected by the line segnigng).

Step (3), that is, the straight “march”, can be implemented in constant time per simplex visited, once
the initial simplex, intersected hi and incident to “starting pointY, is determined.

Motivated by the positive empirical results of [20], where the jump-and-march (or rather, the jump-
andwalk; see also Section 6) is used to implement the randomized incremental flip algorithm to construct
3D Delaunay triangulations, this procedure was recently analyzed for the 2D case, with the result that
the expected query time is(@"3) when the points are randomly distributed [10]. This result, in turn,
builds on the work of Bose and Devroye [6] who prove that for any line segiméme expected number
of intersected triangles in proportional tb|n'/2.

In the following, both results are extended ®?, showing that the jump-and-march point lo-
cation in spatial Delaunay triangulations af random points has an expected running time of
O(8(n)Y*n** (logn/loglogn)®4), wheres (n) denotes thexpectedlegree of a Delaunay vertex. A re-
sult by Bern et al. [3] on the expectedaximumdegree would givé (n) = O(logn/loglogn). On the
other hand, Dwyer [13] shows thatrn) = O(1) for any fixed dimensionl, under the assumption that
the points are chosen uniformly at random id-aimensional ball. 3D Delaunay triangulations are of
quadratic size in the worst-case. Years of “real world” usage in the mesh generation industry seem to
suggest, however, that for problems of practical relevance their size is only expected to be linear in
One can further argue then, thah) is expected to be constant in practice. For the jump-and-march, this
means that the expected running time will be close t0'®). This compares well to the theoretically
optimal Qlogn) bound, at least for practical sizes of input data; for examgté/ log,n < 2.5, forn in
the range up to 10

On a theoretical side, our work addresses and solves two difficult issues. First, when proving
“probabilistic impossibility results” for Delaunay triangulations one is naturally led to define volumes
and to argue that these volumes are likely to contain some Delaunay vertices. One must be careful thougt
to define (as much as possible) these volumdependentlfrom the vertices. We achieve this difficult
task in 3D. Second, the perturbing effect of the boundary is very well-known. The probabilistic model
of [3], for instance, was designed to analyze typical properties of Delaunay triangulations away from the
boundary. Here, we provide a specific estimate of the range of this perturbation. Our methods seem well
suited to bring even more precise results.

Outline. The paper is organized as follows. In Sections 2 and 4, we first generalize the result of [6]
regarding the intersection of a line segment with a random Delaunay triangulation to 3D. Then, we
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generalize the proof of [10] to 3D. Section 3 presents an outline of the proof. In Sections 5 and 6, we
present empirical results over randomly generated point sets ranging: fro®00 to 50000. Our tests
confirm that the method is efficient in practice and compares with theoretically optifiog ) methods,

at least in the above range, which seems to be of most relevance for practitioners in GIS and CAD.

2. Statement of results

Let C be a convex domain dik® and leta and 8 be two reals such that @ « < . We say that a
probability measure? is an(«, 8)-measureover C if P[C]=1 and if we havex A(S) < P[S] < BA(S)
for every measurable subsgtof C, wherex is the usual Lebesgue meastirédn R3-valued random
variable X is called an(a, 8)-random variable ovef if its probability law £(X) is an(«, 8)-measure
overC. A particular and important example of &m, 8)-measureP is whenP is a probability measure
with density f(x) such thate < f(x) < B for all x € C. One of the advantages of our more general
notion is that it allows for a probability measure charging only points with rational coordinates: this is
the case for most computer simulations. This probabilistic model was introduced in [6]. The Poisson
model of [3] is related to ours in the sense that, conditioned on the numtiepoints observed over a
finite volume, the probability distribution is uniform, that is, @n «)-measure.

Below is our main result on the expected running time of the jump-and-march algorithm, when applied
on D, the Delaunay triangulation @f random points ifR3.

Theorem 1. Let C be a bounded convex set®f and letX, ..., X, ben points drawn independently
in C from an(«, B)-measure. Then there exist constatitsc, and ¢z depending only upon, 8 and C
such that the following holds. Assume that n'/® and that the query point is selected independently of
X1,..., X, and is at distance of at least/n*® from the boundaryC. Then the expected time of the
jump-and-march algorithm is bounded by

com8(n) + c3(n/m)*3logn/loglogn,

where §(n) is the expected vertex degree of the Delaunay triangulation. In particular, the expected
time is optimized t&®(8(n)Y*n** (logn/loglogn)®*) with the choice ofn = ® (n*/*/8(n)%* (logn/
log logn)®/4).

The proof of Theorem 1 rests on the following theorem.

Theorem 2. Let C be a bounded convex set®f and letX, ..., X, ben points drawn independently
in C from an(«a, 8)-measure. Then there exist constasifsind cs depending only upoa, 8 and C such
that the following holds. LeL be a segment i€ being at distance of at least,(logn/n)Y® from the
boundarydC. Let N be the number of intersections betwdeandD. Then

E[N]1<cs|L|n*3logn/loglogn.

We can easily extend Theorem 2 to the case wheis a random segmerihdependenbf the n
points X1, ..., X,,. For this, define the ever® = {d(L, dC) > ca(logn/n)*3}. We then haveE[N |

3 Note that the relation(C) < 1/a < oo implies thatC has finite area. The convexity 6f then implies thatC is bounded
(that is, thatC is included in some finite ball).
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Bl < csE[|L| | Bln'3logn/loglogn. In Section 4, we first prove Theorem 2 following the same ideas
as [6]; however, we would like to point out that the technical details are quite different in 3D and more
difficult. Given Theorem 2, it is easy to generalize the result of [10] to obtain Theorem 1.

Before presenting the proof let us clarify some rather difficult probabilistic issues underlying
our results. It is important to realize that our probability results invdive very different sources
of randomness. The first source of randomness is(éh¢)-measure generating the random input
X1, ..., X,. In particular, the expected vertex degEe) is computed with respect to this probability
measure. The second source of randomness is the randomness introduced in step (1) of our randomize
algorithm. The expected values presented in Theorems 1 and 2 are computed over both sources o
randomness. In addition, one should realize that, in Theorem 1, the query pawitsampled from
any fixed random distribution: this point is chosen non-deterministically. One way to express that, is to
say that the query point is selected by an adversary. The adversary can itself use randomness and can |
assumed to know the two probability distributions used in our analysis; of course, a critical restriction is
that the adversary must select the query point unaware of the realization of these distributions.

To finish, let us mention that the results of Theorems 1 and 2 can be tightened by specifying how
the constantss, ..., cs depend on the geometry 6f. In particular one could show that these constant
depend orC only through its volume and the curvature of its boundary.

3. General outline of the proof

As mentioned above, Theorem 1 is a rather simple consequence of Theorem 2. We outline first the
proof of Theorem 1. In general, the time required to walk through a segménproportional to the
number of Delaunay tetrahedra crossedIbyBy Theorem 2, this number is close [tb| n'/3 provided
that the segment is choserindependentiypf the triangulatioriD. To apply this result to the walk-phase,
when one walks front (the point selected in the jump-phase)qgtdthe query point), we proceed as
follows. We consider the triangulatic®’ induced by the: — m points not used in the jump-phase. One
can easily show that the total time required by the walk-phase is bounded by the time to walk from
to ¢ in D', plus the total tetrahedron-degree {iY) of the m points Yy, ..., Y,,. The pointY depends
onlyonYs,..., Y, andis independent from the triangulati®. One can therefore apply Theorem 2 and
show that the expected time to walk frornto ¢ in D’ is O((1/m/3)(n — m)*/3logn/loglogn). (The
assumptionn > n%/% is used there.) On the other hand, the expected tetrahedron-deg®@edireach
point Y4, ..., Y, is equal tos(n). As mentioned in Section B,(n) = O(1) in practical situations and
always at most Qogn/loglogn). This establishes Theorem 1.

We now turn to an outline of the proof of Theorem 2. This proof is longer and requires several
technical lemmas. To bound the (expected) number of tetrahedra traversed by a segmerdover
L with little balls of appropriate radius and reduce the problem to bound the (expected) niipnbier
tetrahedra intersected by each of these Wadls, r). (This idea is directly inspired by [6].) To estimate
(the expected value ofy, we introduce and analyz¥,: N; is the number of siteX; such that one of
the Delaunay tetrahedra incident Xg intersectsi3(y, r). To connectV, to N; we use an extension of
a result established in [3]: with high probability, for every skg the number of Delaunay tetrahedra
incident toX; is O(logn/loglogn). This allows us to derive tha[N,] = O(E[N1]logn/loglogn).

We have reduced the original problem to the one of estimating an upper boutjdvef. For this,
we consider a given sit&; and estimate the probability that one of the Delaunay tetrahedra incident to
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X, intersectsB(y, r): E[N,] is equal ton times this probability. Our majoration hinges on a geometric
argument: we consider a set of three little ballg, A, Az positioned at equal distance betweEn
andy. (This set depends upaXi; andy but not uponXs, ..., X,.) We show that every ball containing
X, and intersecting3(y, r) must contain one of the three balllg, A,, A3. By the Delaunay empty-
ball condition, no Delaunay tetrahedron incidentXe can interseci3(y, r) if each of the three balls
A1, Ay, A3 contains a siteX ;. This fact allows us to bound the probability that one of the Delaunay
tetrahedra incident t&; intersectsB(y, r). This in turn allows us to boun&[N;], then E[N>] and to
prove Theorem 2.

To finish we mention some thorny technical issues encountered in the proof. The main customary
argument used when proving probabilistic upper bounds for Delaunay triangulations consists of defining
volumes (usually balls), and to argue that no Delaunay site should be contained in these volumes. One
must be careful to define as much as possible these volumes independently of the Delaunay triangulation
To achieve that purpose we introduce in Section 4.1 the notion of a “spindle”: the spindle is composed
of the three ballsA,, A,, As. The independence of the spindle from the Delaunay triangulation is used
critically in the proof of Lemma 5.

A second difficulty comes from the fact that all three ballg A,, Az might not be fully contained
in C when X, is too close to the boundary @f. The formal treatment of this situation complicates the
estimation ofE[N4] done in Lemma 5.

4. Probabilistic analysis

To denote the fact that a simpléx(edge, triangle, or tetrahedron) is part of the Delaunay triangulation
D, we write: F € D. For every four points, y, ¢, z in general position we lef(xyzz) be the unique ball
circumscribed to these four points. Also, for every poirdndr > 0, we letB(x, r) denote the ball of
radiusr centered at point.

Our arguments proceed as follows. First, we state and prove a geometric lemma (Lemma 3), which
will later be used in the proof of Lemma 5. Second, we give a set of probabilistic lemmas (Lemmas 4-7),
which, in a third step, we combine to prove Theorems 1 and 2.

4.1. A geometric lemma

This section is devoted to formally define the construction of the three Bhalld,, Az and to prove
Lemma 3 stating that every ball containidfy and intersecting3(y, r) must contain one of the three
balls A1, A,, As. The construction is based on a geometric object calleditadle depending on two
parameterg; andk,. The result of Lemma 3 depends on a third paranveter

For Lemma 3 we restrict the numbeks, k,, k3 to be positive and such that + k3 < % and
3k, + 2ks < ky. In the proof of Lemma 5 we will impose some additional restrictions on the choice
of these three numbers.

Let I be a positive number. We define &spindleto be a geometric object composed of an axle
surrounded by three balls:

e The axle is a line segmenty of lengthi.
e At g = (x +y)/2, we attach three spokes of lengti. The spokes are in a plane perpendicular to the
axle; each pair of spokes forms an anglé€2f)/3.
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Fig. 1. Definingk1, k2 andks. Segmentey is perpendicular to the plane of the figure and fdsr its midpoint.
The figure seté = 1; sok,l becomeg, for: =1, 2, 3.

oo : P
ST6 : -

: U min

Fig. 2. The case where= 7t/6. Again, we set = 1 to simplify.

e We place a ball4; at the end of each of the three spokes 1, 2, 3. These balls have radiis/ and

their centers are at distan¢® — k)I from g.

The collection of the three balls,, A5, A3 is called thewheelof the spindle.

Fig. 1 illustrates the situation. The plane of the figure (which is the plane of the spindle which contains
the centers ofi1, A,, A3) is perpendicular tay and goes through. Let P, be any plane going through
g and containingey, and letP; andP; be the two planes parallel 8, and at distancé; of P.

Let alsof denote the angle betweé and the spoke ofi;, and consider the case where- 7t/6. In
this case, the balld; and A3 are at the same distance®f, namely:d (A1, P2) = d(As, P2) = dmin. AS
illustrated in Fig. 2dmin = 11 Sin(7t/6) = 11 /2. The quantitieg,, I, andls satisfy the three linear relations
Iy + Iy + I3 = k1l andiz = kyl = I, sin(7t/6) allowing us to conclude thakyi, = 11/2 = (k1 — 3kp)l/2.

For a general value df, we can easily check that there is (at least) one dafluch thati(A;, P,) >
dmin and such tha#4; is on same side dP, asP;. Symmetrically, there is (at least) one bal} with
d(A;,P2) = dmin and which is on the same side B asP;. Therefore, the choics < dmin €nsures
that, for every value of, there are two ballgl; andA; such thatA; is “below” Pz and such tha# ; is
“above” Pj. 4

4 The terms “below” and “above” are used for simplification and are intuitively made clear by Fig. 1.
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Fig. 3. Planevgy is the plane of the figure( the center of balB, is not drawn); it is perpendicular to the plane of
the spindleS (that is, the plane of Fig. 1). All the points depicted lie in plage; pointsx, a, b, y' lie on ball 3;
pointsx, ¢, d andy’ are collinear. The shaded area represgépnts

Lemma 3. Let x, y, x1, ..., x, be points inR3 with [ = d(x,y) and letkq, k,, k3 be three positive
numbers such thakt; + k3 < % and 3k, + 2k3 < ky. Let S be anyl-spindle whose axle isy and let
as beforeAq, A,, Az be the three balls of its wheel. Finally, |I& be the Delaunay triangulation of
x,x1,...,x,. Ifall three ballsA1, A>, Az each contain a point;, then there exists no tetrahedronnh
incident tox which intersects (touches, crosses or contains) the®all kzl).

Proof. We begin by noting that; + k3 < % implies that the ball#(q, k1) andB(y, k3l) do not intersect;
see also Fig. 3. We are going to show that every Batlavingx on its boundary and intersecting ball
B(y, k3l) must contain one of the three balls, A,, A3 in its interior. This implies the lemma: assume
there exists a tetrahedrortzw € D intersectingB(y, k3l). The ball B(xtzw) circumscribed tacrzw
obviously also intersect8(y, k3l). The prerequisite of the lemma states that each ofahed,, A3
contains a poink;. As we claim, this implies thaB(x7zw) contains one of thel;, A», Az and thus the
corresponding;. This contradicts the assumption thatw is a Delaunay tetrahedron.

Consider therefore a ball having.x on its boundary and intersectifff y, k3l); let o denote its center.
Fig. 3 illustrates the situation as a projection onto the pleqwe which is perpendicular to the plane
of S. All the points mentioned in the figure do belong to the plape (buto is not represented for lack
of space). In particular, the point being on the lineyy, is part of the figure. Also, let’ be a point of
BN B(y, kal) N Plandogy).®

The radiusks! being smaller than the radiug/, the line xy’ necessarily intersect8(q, k11); see
Fig. 3. The intersection is a segment that we dendteBy convexity, the balB containsxy’ and hence
also containg:d. This immediately implies that the intersection of the two b#lls B(g, k1) £ I, is
not empty.Z, is therefore either one of the two balls or the union of two spherical caps. The fact that
k1 < ks+k1 < 1/2 implies thate does not belong t8(q, k1/) and hence thai; # 5. On the other hand,
if Z; = B(q, k1l) thenB contains all three balld,, A,, Az and we are done.

We can therefore reduce the analysis to the case of Fig. 3: the interséctigrconvex and) consists
of two spherical caps sitting on a digk; this disk is perpendicular to the line segmeat(joining the
centers of the two balls) and hence perpendicular to the planef Fig. 3; the latter plane interseaigin
the line segmentb. Consider now another plane, also perpendicular to the planebut containing the
line segmeniy’. This plane cutd3(g, k1/) in a disk that we denoté,. This disk is also perpendicular
to the planengy which it intersects in line segmentl. Fig. 3 illustrates that, by convexity of the arc
xaby’, the line segmentcdy’ does not intersect the segmedit This implies that the two disks; and
C> (which are both perpendicular to plangy) do not intersect. Now séf, to be the spherical cap of

5 This intersection is not empty, becauséntersects3(y, kal).
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Fig. 4. The minimal spherical caf cut out of the ball5(g, k1/) by the plangPy containingx and tangent to
B(y, k3l). The plane of the picture is the plangy, whereo is the center of5.

B(q, k1) “below” disk C», that is, the spherical cap @f(q, k1/) cut by C, which does not contain the
disk C;. Our discussion allows us to conclude t@atcC Z;.

Recall that, in the previous argument,is any point inB8 N B(q, k3l) N Plan€ogy). Therefore, in the
case where belongs ta53 we can select’ to be equal tg . In that casé; is an hemisphere d(q, k1l)
(which contains trivially one of the balld,, A5, A3). On the other hand, if ¢ B, thenZ; is the smaller
of the two spherical caps determined @y

Summarizing all the previous discussion, we have established so far tBais & ball havingx on
its boundary and intersecting|(y, k3l), then there exists a plarfe containingx, intersecting3(y, kzl),
and such that the intersectidhn B(q, k1) contains the smaller of the two spherical caps cut out of
B(q, k1l) by P. Furthermore, it is clear that we can restrict ourselves to the case Whisreangent to
B(y, k3l); this corresponds to the case where the sphericalg&pminimal among all spherical caps cut
by planes containing and intersectind3(y, k3l). We can therefore rewrite the preceding summary as
follows: Let B be any ball having: on its boundary and intersectirif y, k3l). Then there exists a plane
Po containingx and tangent td(y, k3l) such that the intersectioi N B(q, k1) contains the smaller of
the two spherical caps cut out Big, k1) by P.

Fig. 4 illustrates the new situatiof?, is such a plane tangent &Yy, k3/), andZ, is the smaller of the
two spherical caps thg®, cuts off 5(g, k1/). Now let P, be the plane perpendicular to the plang
(the plane of the figure) which contains the lingy, and letP; be the plane parallel t&, and tangent
to B(y, k3l); obviously, the distance from to P; is equal toks/. Finally, let’P; denote the plane that
containsg and is perpendicular t®,. Note thatP; is also the plane of Fig. 1 defined by the centers of
the three ballsA;, A, and A3 of the spindleS. Moreover, the plane®, andP; intersectP; as indicated
on Fig. 1.

To come to a conclusion, I€5 denote the smaller of the two spherical caps cuPhynto B(g, k1l).
Our earlier choices fokq, ko, k3 imply thatZz contains at least one of the three ballg A,, Az of the
spindleS. SinceZs C 7, C 7;, we established that the ba#l contains at least one of the three balls of
the spindle, and Lemma 3 is proven

4.2. A set of probabilistic lemmas

In order to prove the theorems, we need a set of probabilistic lemmas. The proof of Lemma 5 hinges
critically on Lemma 3.
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=

Fig. 5. For every poinp of a convex solidC and every smalt, C contains a spherical cone of radiuand of solid
angled issued fromy.

Lemma 4. Let X; be a random variable drawn from af, 8)-measure over a bounded convex Eet
Then there exist constants> 0 andy > 0 such that for every < ro,

inf Pld(Xy,y)<r|>vy e,
yeC

Proof. By convexity of C there exists a distanog and a value® < 47t such that the following holds.
Let y be any point inC. Then there exists a spherical cahaith summity, radiusr and solid angle
such that is included inC; see Fig. 5. The volume V@) of this cone i@ /4m)r3. Therefore, ifX; is
a random variable drawn from da, 8)-measure ove€, we have

0
P[d(Xl,y)ér]>P[X16C]>aVOI(C):aEr3. O

In the following, we denote the set of all Delaunay tetrahedra incident to a gpioy 7y,. Lemma 5
estimatesVi, the number o;’s such that7y, intersects3(y, r); in other words, the number o&f;’s with
the property that at least one of its incident Delaunay tetrahedra intefs@cts). With this, Lemma 6
will estimate the number of Delaunay tetrahedra intersedsfiag ).

Lemma 5. Considern points X4, ..., X, drawn independently from af, 8)-measure over a bounded
convex seC. Then there exist positive constaatsh, ¢ andd, depending upowr, 8 and C only, such
that the following holds. Leg be any point inC at distancea(logn/n)%? from the boundanpC and

r <1/2d(y, dC) be a positive quantity. Le¥; denote the number &;’s with the property that one of
the tetrahedra ir7y, intersectsB(y, r). Then

E[N1]<b+cr?n?®+dnri.

Proof. By linearity of the expectationE[N,] = np, wherep is the probability that one of the Delaunay
tetrahedra incident t&, intersectsB(y,r). Let L = d(X4, y); L is itself a random variable. In the
following we condition on the value oX;. The pointsX; andy are then fixed, and we |&lx, be any
L-spindle whose axle iX1y. (Hence the anglé of Fig. 1 is arbitrary but fixed.) As beforel, A,, A3
denote the 3 balls of the wheel. Remark that the ey8pt < C} = {the 3 balls of the spindl€y, are
included inC}.

In the following, let eventB; = {Sx, € C, k3L > r}. Note that the relatio;L > r implies thatX;
does not belong t8(y, r). The firstinequality is therefore a direct consequence of Lemma 3. In the third
inequality, 1;,, <, denotes the random variable equal to 1 whgh < ro and 0 else.
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P [Ty, intersectd3(y, r) | X1, Bi]

< Pone of the 3 ballg\;, A2, Az contains no poinky, ..., X, | X1, Bi]

P[A; contains none of the poinfs,, ..., X, | X1, Bi]

n

[[P[X: ¢ A, X1, By 1)
i=2

3
<>
j=1

3
>
j=1

<BE[(1—y(kal)®)" ™ Liprcrg | X1, Ba] +3E[(1— yrd)" " Ligory | X1, Ba).

Eq. (2) is a consequence of the (conditional) independence of the eXegtd ;. This independence
comes both from the fact that the random variab¥esare independent and the fact that the 3 balls
A1, Ay, Az are definedndependenthof the pointsX,, ..., X,. The necessity of this last independence
is not always recognized and leads to frequent mistakes in the literature.

We now justify the last inequality. Note first that, by Lemmay4k,L)3 < 1 whenk,L < ro. The
expression1 — y (kpL)3)"~1 is therefore well-defined. The conditioning &%, C C ensures that each
ball A; is fully contained inC. This implies in particular that the centgr of each ballA; is in C. We
can then apply Lemma 4 (which determines the valuesdr,) using the fact that the random variables
X; are all drawn independently according to(an 8)-measure.

We let By = {ksL < r} U {Sx, Z C} denote the complement &f. Integrating the previous majoration
of P[Ty, intersectd3(y, r) | X1, B1] with respect taX, therefore gives

p = P[Ty, intersectsB(y, r), B1| + P[Tx, intersectsB(y, r), B]
< PlksL < r] + P[Ty, intersectsB(y, ), Sx, € C] +3E[(1—y (kaL)®)" ™" Lyt <ro Liar > ]
+3(1— yrg)"_l P koL > ro; k3L >r]

def

=1+ +1 41V,

The fact thatX; is drawn from an(e, 8)-measure implies that = P [ksL < r| < (4/3) Bn(r/ks)3.
Also IV < 3e =15, which is exponentially small witte sufficiently large. We now turn to Ill.
Note first that(1 — y (k2L)3)" 1 L, <y < e 1-Dykel)* gnd therefore, Il 3E[e "~y kal)® Ligr>r]-
To estimate this expression we use spherical coordinates and obtain

2 2r2 1 1
Il <1676 <3<n "0y kB -DR3 <é)>

We now turn to expression ¥ P[7x, intersectsB(y,r), Sx, € C1; its majoration will involve
showing that only vertices{; within distance @(logn/n)Y3) of y have a Delaunay tetrahedron
extending toy. Furthermore, the conditiofy, Z C implies that the spindle is in the vicinity of the
boundarydC of C, which appears to be flat at the very small distan¢da@n /n)*?) that we consider.
This allows us to modelC locally to be a plané®: C appears locally like a half-plaré.

To simplify we setK = 2k; and recall thak < 1 — 2k3 < 1. Recall also that we definetk, to be any
arbitrary, externally fixed, spindle whose axleyi&;: Sy, is not uniquely determined h¥; but also by
the angley of Fig. 1. For everyX; defineSy, to be the 3-dimensional “tire” span ik, when rotating




74 E.P. Mucke et al. / Computational Geometry 12 (1999) 63—-83

./\ Plane P
A S IIX 1

Fig. 6. A spindleSy, crossingP.

around its axleSy is uniquelydetermined byX; (along withy, K) and containsSx, so that, clearly,
{Sx, Z U} C {8k, € U}. To further simplify, introduceSy, to be the following (simpler) objecty is
composed of (i) the axl&1y, and (ii) a circle of diameteK, the whee| perpendicular toX;y whose
center is the mid-poing of X;y. We sometimes writ€y, (K) to emphasize the value &f. Furthermore,
let P be a plane such that¢ P, let U denote theP-half-space to whicly belongs, and lek denote the
distanced(y, P) from y to P. We only consider pointX in U and say that the spindigy crossesP if
its wheel crosse®. As before, we sel = d(X4, y).

Claim.
(a) Sy, (K) crossesP only if L > Lo(h) = \/1+1/K?h.
(b) If K <0.2then(Sy, (K) £ U} C {Sy, (1.02K) & U}.

We just show (a). Assertion (b) implies that, farsmall enough, a minute adjustmentkinallows to
consider{Sy, Z U} in place of{Sy, Z U}.

Consider a given value df and assume that dirspindleS;| crossesP. Letm be a point on the wheel
“below” P; see Fig. 6. Note that; < 1/2 implies thatd (y, P) < d(y, m) = (d(y, ¢)?> +d(q, m)*)*? <
L/+/2. This implies that there exists a poirg € P and such thati(y, xo) = L. (This point can be
obtained by rotating the spindle around ConsidersS; , the spindle associated 1g. The fact thatS;
crossesP implies thatS; similarly crosses?. (We provide a pictorial justification of this fact. Consider
the rotation of the spindle aroundin the plane of Fig. 6: we lep denote the angle betwesm: and
the vertical linejp; is the angle corresponding to the initial poiat ¢ is the angle corresponding tg;
we also letm, andmg denote the positions @t associated respectively tg andxg. Obviously,m goes
“deeper” belowP as¢ € [0, 1] decreases to 0. A&(y, g) > d(q, m) the anglepy belongs tg0, 7t/2].
Thereforem is deeper belowp thenm;.)

To prove impossibility results we can therefore restrict ourselvesd@. Consider such an. The
fact thatS! crossesP implies thatd (¢, m) = k1L > L/2tand whered = arcsin(z/L). This immediately
impliesL? > ((1+ K?)/K?)h?. We are now ready for the majorations below.

P [sggl Z U, Ty, intersectd3(y, r)]
=P [8;1 Z U, ElXiz, Xisa Xi4 such thatX1X,-2Xi3X,-4 eD
and such thak; X;, X;, X;, N B(y, r) # 0]

< max P [Hxiz, X Xi4; d(Xls y) = Lo(h)s XlXiQXi3Xi4 € D’ y/ € B(XlXiQXi3Xi4)]

i
y'eB(y,r) ¥



E.P. Mucke et al. / Computational Geometry 12 (1999) 63—83 75

B(x,t,z,u)

al feast L’

N

at least h’

line 1

Fig. 7. The con€ contained in every(xtzu), containingy’ and such thad (x, y') > Lo(h).

< max ("5 Y) Pl ) > Lolh), XaXeXaXa €D, y' € BX1XaXaXe)
y'eB(y,r

3

n —4

< max T [ AP v ot 2.0 (P Xs € Btz ")
’ T,

y

where T,/ = {(x,t,z,u) € U% d(x,y) > Lo(h) and y' € B(xtzu)}, and Px, x,.x5.x, denotes the
probability law of the random variablgX, X5, X3, X4).

We now compute an upper-bound for the expressitiiXs ¢ B(xtzu)] when the points, ¢, z, u
of U are such that/(x, y) > Lo(h), and such thay’ € B(xtzu). We definek’ £ \/1+ 1/K2. Hence
Lo(h) = K'h. We also sek” = 2K’ — 1. We need the following claim.

Claim. If d(x,y) > Lo(h) andy’ € B(xtzu) N B(y, r) then

T K//Z 1/2 s 5
Vol (B(xt NnNU) 2 —| ——= h3 = h3.
(B(xtzu) N U) 24<1_ 1/K”2) c

The situation is presented in Fig. 7. The b8llxtzu) cuts minimallyU only (i) whenx is on the
boundaryP, (ii) when y’ is on the boundary aB(x¢zu), and (iii) when the centes of B(xfzu) is such
that the planexoy’ is perpendicular tdP. We therefore consider the situation within plang/’, as in
Fig. 7.

The centemw is located on the liné perpendicular to/x and going through the mid-poinat of y'x.
Let b be the intersection dfwith P. Consider the cong issued fromb and whose base is the circle with
diametery’x. We claim that is included in the ballB(x¢zu) cutting minimallyU. (i) This ball B(xzzu)
must have its center belowa: if not, at least half of3(xzzu) is in U. (i) If o is underb, thenb is in
the convex hull of the 3 pointg’, x, o. All 3 points y’, x, o are inB(xtzu) and hence so 8. B(xtzu)
then clearly containg. (iii) If ¢ belongs to the segmeanb thend(o,b) < kiL < L/2<d(o,y’). Thus,
if o € [a, b] thenb € B(xtzu) andB(xtzu) containsC as before.

This shows that = Vol (B(xtzu) N U) > Vol(C). Using the fact thatl (y, y') <r < h/2, we find that
v is at least equal tor/3)(L'/2)3tan(0’/2), whereh’ =h —h/2=h/2, L' = Lo(h) —h/2= K"h’ and
whered’ = arcsinh’/L’). We obtainv > ¢’h®, where

/ - ( K2 )1/2
c=—|——7—= ,
24\1-1/K"?

and have thus proven
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w

3
P[SY,  C, Ty, intersectsB(y, r)] < %(1 — c’ah3)”_4 < % g (1—dc'ah®
Selecting
4 logn\ Y3
h(n) = (/— g )
coa n

gives Il=0(1/n), as needed. Then, multiplying laythe bounds found for, Il, Ill and IV and summing
establishes the result, and concludes the proof of Lemma5.
Lemma 6. Under the hypothesis of Lemrba

E[N;] <e(b+ crn® 4 dnrg) logn/loglogn,
where N, is the number of Delaunay tetrahedra that intersétity, ») and wheree is a constant
depending solely o6, @ and 8.

To prove this, we need the following result, very similar to the result derived in [3, Theorem 7].

Lemma 7. There exists a constant such thatP[d°(X1) > ¢” logn/loglogn] < 1/n*. Therefore,

P[3i, d°(X;) > ¢’ logn/loglogn] < 1/n°.

Proof. The proof of this result follows very closely the proof for the Poisson model given in [3,
Lemmas 8 and 9]. The only technical difference is that they bound the first probability:Byiristead

of 1/n%. We show here that/b* is similarly valid. A careful reading of their proof shows that we
only need to establish that, with probability at least 1/n*, the maximum Delaunay edge length is
O((logn/n)*/3).°

We compute
P [d(Xl, Xo)>2h; X1Xo€ D] <P [d(Xl, Xo) > h; iz, iy such thatXleX,-3X,-4 € D]
<n?(1—y (/23" < On%e WD),

Therefore,P[3X;, X;, such that(X;,, X,,) > h andX;, X;, € D] < O(n*e v #/2°) Thisis al/n?) if

1

32logn\ 3

h > <— gn) . O
Y n

Proof of Lemma 6. By Euler’s formula, there is a constaif such that the tetrahedron-degree is
equal toK times the edge-degree. For convenience, assumeBthdenotes the everfi, d°(X;) <
¢"logn/loglogn}, which is identical to the everVi, tetrahedront’ (X;) < K¢”logn/loglogn}. Then,
from Lemma 7 it follows thatP[B;] < 1/n° and we haveE[N,] = E[N»; By] + E[No; By]. The two
termsE[N,; B,] andE[N,; B,] need to be bounded separately. We begin &if>; B,]:

6 Theorem 1 of [3] establishes that the maximum edge length is at n(()lsiga)l/3) with high probability. Our additional
factor l/nl/3 comes from the fact that they consider a cube of variable side lerigf
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E[N2; Bz]= P[B2], E[N2| B;]
< Kc"P[B,]E[ N1 | Bo]logn/loglogn
= Kc"E[N1; Bz]logn/loglogn
< Kc"E[N4] logn/loglogn
< K" (b+ cr®n®? 4+ dnr®) logn/ loglogn.
On the other hand,
E[N5 B] <002 P[B] <O(w) 5 =o).  ©

Corollary 8. Considern points X,,..., X, drawn independently from aiiw, 8)-measure over a
bounded convex sé&t. Then there exist positive constamts, ¢, d and e, depending upowr, 8 and C
only, such that the following holds. Letbe any point inC at distancez(logn/n)Y? from the boundary
aC. Letr,r < a/(2n*?) be a positive quantity. LeV, denote the number of Delaunay tetrahedra that
intersectB(y, r). Then

E[N2] < e(b+c(a/2)* +d(a/2)%) logn/loglogn.
4.3. Summing it all up
We are ready to prove the theorems.

Proof of Theorem 2. We setc; = a, wherea is the constant of Lemma 5 and Corollary 8. The segment

L may be covered by(|L|/a)n*/?] circles of radiusz/(2n/3) each and centered on poings of L.

The numbeIN of intersections betweeh and the Delaunay triangulation is bounded by the sum of the
number of intersections with these circles. By Corollary 8, the expected number of intersections with
each of these circles is bounded Kylogn/loglogn for some constank depending upow, 8 andC

only. Hence,

a a
which proves Theorem 2.0

E[NI<K PMnlﬂ logn/loglogn < K(l—i- |L|nl/3) logn/loglogn,

Proof of Theorem 1. We have in mind to apply Theorem 2 to the segment gY. We are faced with
two difficulties. First, both and L are defined in terms dfy, ..., Y,, and are therefore not independent
of X1, ..., X,. Secondy can possibly be within distaneg(logn/»)Y/2 from the boundary C. We will
solve the first difficulty by considering a slightly different Delaunay triangulation with respect to \thich
is independent. We will solve the second difficulty by showing tha with high probability at distance
of at leastcs(logn /n)Y/3 from dC.

Let us first recall thay and Y are defined in very different ways. The condition that they be “far
enough” from the boundary must therefore be handled differently. The querygoi@imot in the control
of the algorithm. It is instead decided externally and the algorithm is claimed to perform well for all
admissible choices af. Thus, the assumption;‘is at distance of at least/n'/*8 from 3C” is merely a
restriction on the set of query points against which the algorithm has to measure. On the other hand, the
pointY is chosen randomly, as described in the algorithm in Section 1. The factithat distance of
at leastc4(logn/n)/3 from 3C” cannot therefore be imposed externally.
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Letus relabel Xy, ..., X,} — {Y1,..., Y, }into {X}, ..., X,_,.}. As usual, letD denote the Delaunay
triangulation associated to the points X4, ..., X,, and letD’ denote the Delaunay triangulation
associated to the — m points X}, ..., X,_,.. The random variablex’, ..., X, . are independent
from the random variableds, ...,Y,,. This implies that, for every query point, (X,....X,_,)

def

is independent front’, which allows us to make the following two conclusions. Fikt= (Y, q),
the line segment connecting and ¢, is independent of the: — m data points definingD’.
Second, the probabilistic behavior &f;, ..., X/ _ is unaffected when conditioning on the event

B3 £ {d(Y,dC) > cy(logn/n)*/3). In formal terms, the probabilistic lavg(X}, ..., X, ) is equal
to the conditional lawl((X}, ..., X,_,,) | B3). In particular, the random variables;, ..., X, _, are
independent identically distributed, 8)-random variables under the conditional probability distribution
P[-| Bs].

Let N denote the number of tetrahedraZy crossed byL.. We haveE[N] = E[N; B3] + E[N; Bs]
where B3 denotes the complement &;. We provide upper bounds for the two term@$N; Bz] and

E[N; Bs].

We begin WithE[N; Bz]. Itis well known thatV = O(n?). HenceE[N; B3] < O(n?) P[B3]. We fixc to
be a constant such that, for everycs(logn/n)Y/3 < (c¢/2)(1/n)Y*8. Recall thatP[Bs] = P[d(Y, dC) <
cs(logn/n)Y3] and that, by assumptiow,(q, 3C) > c(1/n)Y/*8. By triangular inequality, this implies
that

_ 1 LY
P[Bg] < P |:d(Ya Q) > %n1/18:| ( |:d(Y1’ q) 2 1/18:|)

1 " —mP[d(Y1,q)<(c/2)(1/n%/18
(l P{d(Yl, q) < > 1/18]> < @ P/ )]
< e P22 A — o(1/52).

This shows thatE[N; Biz] = o(1). We now turn toE[N; B3] = E[N | B3] P[Bs]. Theorem 2 (see
the remark after Theorem 2), along with the fact thé&t, ..., X’ are («, B)-random variables,

n—m

independently identically distributed under the measirg B3], |mpI|es that
E[N | B3l <ca+csE[d(Y, q) | Bs](n —m)*3logn/loglogn.
Hence,
E[N; B3l < c4P[B3] + csE[d(Y, q); Ba](n —m)Y*logn/loglogn
<ca+esE[d(Y, q)]n1/3 logn/loglogn.

The estimation ofE[d(Y, ¢)] is done as in [10]. The beginning of the argument is similar to the
estimation ofP[ B3] above. Lemma 4 is then used. We let di@ndenote the diameter @. Note that
Y andq are inC so thatP[d(Y, g) > t] =0 if t > diam(C).

7 o r0 diam(C)
d(Y q) = / P d(Y Q) > l dl < / me [d(Y1,q)<!] dr < / fmayt dr + / efmotyro3 dr
0 0 0 KA

N
o\

1
emart® gr 4 dlam(C)e*’""‘V’Os = O(T)
ml/3
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We have therefore shown thB{N] = O((n/m)Y3logn/loglogn).

Niota the total number of tetrahedra 1 crossed by, is not more than that fab’, that is, aboveVv,
plus the sumsS of the tetrahedra degrees of (that is, the number of tetrahedra adjacént.ta), Y,, in
the Delaunay triangulatio®. To see this, note thdt either crosses a tetrahedron without one ofithe
as a vertex (in which case the tetrahedron is bot® mndD’) or one for whichy; is a vertex (in which
case the tetrahedron is 1 but not inD’). The total number of the latter kind of tetrahedra does not
exceedS. The expected value df is, by linearity of expectation, 3 times the expected (vertex) degree
8(n) of Y1, where the constant 3 results from Euler's formula. Combining all this we have

E[Nioall = O((n/m)*3logn/loglogn + més(n)).

The time complexityT of the jump-and-march algorithm in Section 1 is proportionakiter Nitar;
the sample sizen comes into play because of steps (1) and (&) is due to step (3)E[T] can
thus be optimized to @ (n)Y*n'/*(logn/loglogn)®*) with the choice ofm = © n/*/8(n)**(logn/
loglogn)¥%. O

5. Empirical results in 2D

This section presents some empirical results on the planar jump-and-march, or better, a variation of it.
For further convenience, we sampl¥? edges of the Delaunay triangulati@n rather than points. Then,
we choose the edge whose midpoint has minimum distance to the querypdif@ find the triangle
containingg by traversing the triangles intersectedby= (y, ¢), wherey is the midpoint of the initially
chosen edge.

We tested this procedure for random point sets of 8ize 1000, 2000, .., 50000; the coordinates
were chosen randomly out of the unit square. In Figs. 8(a) andb)denotes the sample mean of
the number of triangles visited, over a sample of 999 queries, and for one random point setgf size
for eachn; the coordinates of (and the point set) are chosen by random out of the unit square. Thus,
M, corresponds to th&[ Ny in the analysis. Sinc® (logn) is the best known theoretical bound for
planar point locations; see, for example, [21], Fig. 8(c) plots the Mij@log,» to give a measure for

45 T ™ T T ™ 4 ™ T T ™ T 4

4 1 35 35

3 3

25 25

L L L L L 0 L L L L L 0 L L L L L
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

(@) (b) ()

Fig. 8. (a) The sample meak,, of the number of triangles visited, for a sample of 999 random query ppifus
each data set of size (b) The ratioM,, /n'/3. (c) The ratioM, /log, n.
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the efficiency of the method. Note that the best known planar point location algorithm [12] is obtained
by two binary searches, one horizontally and one vertically, thus has at least a constant of 2 in front of
the log, n.

6. Empirical results in 3D

How does the jump-and-march perform in 3D? Again, we implement a slight variation of the procedure
analyzed in this text; the empirical studies listed here, but also in the context of incremental Delaunay
triangulators [20], justify this. In order to discuss the procedure, it helps to have the conceptieited
triangle 7. In essence, it is given by the (ordered) sequence of its vertices. The vertices then define (the
underlying plane with) a normal vector pointing, by definition, to the triangle'sitive sidedenoted by
1. Linear algebra dictates that a triangle has two distinguishable orientations.

With this, our variant, thgump-and-walk works as follows. First, we sample triangles rather than
vertices. The sample size is setrto= O(n'/%), for Delaunay triangulations of points. The “distance”
of a triangle to the query point is calculated as the minimum distance of its three verticag tbhe
triangle rp which scores with the shortest distance is selected. We adjust its orientation suglstbat
its positive side, that is; € 7. The selection of; constitutes the “jump” part of the algorithm.

Second, we perform the following loop, which implements the original “walking” strategy mentioned
in the introduction. The loop has the invariant that 7.

(1) If T is a convex hull triangle and* is outsideD, theng lies outsideD.
Exit loop.

(2) Otherwise, there is a tetrahedronZrincident tor (and int™).
If this tetrahedron containg, exit loop.

(3) Otherwise, select a triangte of the tetrahedron, such thate o .

(4) Setr =0, and continue loop at (1).

Each iteration of this loop corresponds to a tetrahedron visited. Again, note that this procedure is only
guaranteed to terminate for Delaunay triangulations since they are proven to be “acyclic for any fixed
viewpoint” [14]. For arbitrary triangulations, this is not necessarily the case; however, if the selection
of o in (3) is done by random (out of the up to 3 possibilities), then the infinite loop is broken with
probability arbitrary close to 1.

In terms of the number of tetrahedra visited, jump-and-walk can obviously be only worse than jump-
and-march. However, orientation tests in 3D are computationally less involved than intersection tests;
and this is particular true, if the implementation emphasizes robustness. Therefore, it is not surprising
that experiments reveal the jump-and-walk to actually run faster in practice.

For our experiments, we generated 5 random 3D point sets foreach000, 2000...., 50000.

Each data set was then queried with 9999 random points, using the jump-and-walk algorithm. We chose
m = 7n*/* for the random sample. This was empirically determined to be the best choice with respect
to actual CPU time. It is obvious that the larger the smaller the number of tetrahedra visited in the
walk. Form = 2n'/4, these numbers roughly balance. However, it makes sense to ingrelseause the
sampling of a triangle in the jump phase is computationally less expensive than the visit of a tetrahedron
while walking towards the query point. This is so in particular because care has to be taken to implement
the walk robustly, for example, using symbolic perturbation and exact arithmetic.
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Fig. 9. (a) The sample meaw,, of the number of tetrahedra visited, for a sample of 9999 random query points
g for a random point set of size. The plotted valueV,, reflects the worst mean out of 5 random point sets for
eachn. (b) The ratioM, /n'/4. (c) The ratioM,, /log, n.

For each of the 9999 query points we count the number of tetrahedra visited and take the mean.
This gives us 5 sample mean values for eaclirig. 9(a) plotsM,,, that is, the largest of the 5. The
corresponding 90% confidence intervals were consistently smaller4i8h. Here, we say that the
sample meaii has a 90%onfidence intervabf + H% if the interval[i(1 — H/100), i(1+ H/100)]
contains the real mean with probability at least 90%.

Fig. 9(b) plots the ratid/1, /n*/4. It indicates that the constants in our analysis are low, that is, less than
1.6. Moreover, the method compares well with the theoretically best possitidg4), which assumes
both preprocessing and additional storage. Fig. 9(c) piiglog,n and shows that, for the observed
range ofn, the number of visited tetrahedra stays well undéi@y, ».

7. Closing remarks

Point location by walking through a triangulation is used in the practice of geometric computing
for years, and with excellent empirical results; in particular in 2D or 3D mesh generation; see,
for example, [22] or [5,16,24], respectively. More recently, following the original conference presentation
of this work, marching or walking through triangulations or subdivisions is finally also finding the
attention of the more theoretical computational geometry community; see, for example, [1,9,17].

In this paper, following the strict requirement of no additional storage, and by simulating bucketing
via random sampling, we enhanced the procedure to what we call the jump-and-march. We were able to
show that the new procedure has an expected running time¢xdf®when applied to the 3D Delaunay
triangulation of a uniformly distributed random point set of siz&Our own empirical tests verify this;
in fact, the relaxed jump-and-walk procedure, which is even easier to implement, performs as good, or
even better in terms of actual running time. Experiments with nonrandom data show similar results [20].
Our work justifies a procedure which is often used in the “real world” and even suggests a simple yet
effective improvement.

Our work raises several interesting questions both theoretical and empirical.

(1) Our result shows that the method requires expected time closetdO?) for d = 3 dimensions. It
would be very interesting to settle whether the method performs equally well for higher dimensions.
Two things are required to adapt our proof to higher dimensions. First, in order to extend our
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Lemma 5 and bound the expected valueVaf one needs to define appropriatelyddimensional
spindle”: this geometrical object is composed dbfballs whose centers are onda— 1-sphere
positioned on the hyperplane betwe€énandy. A critical step is to provide d-dimensional version
of our Lemma 3. Second, one needs to providedimensional replacement to the Euler argument
that allowed us to relat&/, to N;. A complete different approach might be possible. Indeed, we
believe that our results can be tightened and that

(2) in all our results the log/ loglogn terms can be removed.

(3) Our results make explicit the perturbing influence of the boundary. The proof of Lemma 5 required
to identify locally the boundargC to a plane. It would be very interesting to quantify this in terms
of the curvature obC.

(4) Itwould be extremely interesting to know how the method performs on non-Delaunay triangulations.

(5) Finally, it would be very interesting to construct an adaptive version of our algorithm in the context
where many query points are considered. One possibility would be to incrementally improve the
data-structure as more and more query points are located. This would allow to seleqidhres of
phase (1) in a more optimal way than purely random, resulting in a poifser to the query point.
The improved algorithm could be analyzed via amortized analysis.
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