
K-D Trees Are Better when Cut on the Longest

Side

Matthew Dickerson1, Christian A. Duncan2, and Michael T. Goodrich3�

1 Dept. of Math & Comp. Sci., Middlebury College, Middlebury, VT 05753
dickerso@middlebury.edu

2 Algorithms & Complexity Group, Max-Planck-Inst. für Informatik, D-66123
Saarbrücken, Germany duncan@mpi-sb.mpg.de

3 Dept. of Comp. Sci., Johns Hopkins Univ., Baltimore, MD 21218
goodrich@jhu.edu

Abstract. We show that a popular variant of the well known k-d tree
data structure satisfies an important packing lemma. This variant is a
binary spatial partitioning tree T defined on a set of n points in IRd,
for fixed d ≥ 1, using the simple rule of splitting each node’s hyper-
rectangular region with a hyperplane that cuts the longest side. An in-
teresting consequence of the packing lemma is that standard algorithms
for performing approximate nearest-neighbor searching or range search-
ing queries visit at most O(logd−1 n) nodes of such a tree T in the worst
case. Traditionally, many variants of k-d trees have been empirically
shown to exhibit polylogarithmic performance, and under certain restric-
tions in the data distribution some theoretical expected case results have
been proven. This result, however, is the first one proving a worst-case
polylogarithmic time bound for approximate geometric queries using the
simple k-d tree data structure.

1 Introduction

The humorist Erma Bombeck is quoted as once praying,

“Lord, if you can’t make me thin, then make my friends look fat.”

In computational geometry, however, we desire objects that are fat, not thin.
That is, we desire objects that have a bounded aspect ratio, and this desire is
particularly true in the context of spatial partitioning data structures. However
it turns out occasional skinny objects are acceptable as long as there are not
too many of them and their neighbors are not skinny. Indeed, a recent paper on
this topic by Maneewongvatana and Mount [14] can be viewed as turning the
Bombeck quote around by stating,

“It’s okay to be skinny, if your friends are fat.”
� This research partially supported by NSF grant CCR-9732300 and ARO grant

DAAH04-96-1-0013.

M. Paterson (Ed.): ESA 2000, LNCS 1879, pp. 179–190, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

180 Matthew Dickerson et al.

In the same way, we are interested in studying spatial partitioning data struc-
tures that allow some regions to be skinny so long as the regions around them
tend to be fat. We formalize this into a framework we call the quasi-balanced as-
pect ratio tree framework, or quasi-BAR tree, for short. We show that trees that
fall into this class satisfy an important packing lemma that implies they can be
used efficiently for approximate nearest-neighbor and range searching queries.
The major result of this paper is to show that a popular variant of the well-
known k-d tree data structure falls into this framework. This fact implies that
several standard k-d tree searching algorithms actually run in polylogarithmic
time when applied to this k-d tree variant.

1.1 Prior Related Work

Bentley [3] introduced the k-d tree data structure for storing a set S of n points
in IRd, for fixed constant d ≥ 1.1 The idea behind this structure is quite simple.
We recursively assume that we have a bounding box, B, that contains all the
points in S. We choose one of the d coordinate directions and find the median
point in S with respect to this direction. We then cut the box B by a hyperplane
perpendicular to this direction so as to go through this median point, and we
recurse on the two regions and point sets that this cutting determines. Thus, by
repeating this operation until the number of points inside the bounding box is less
than some constant, we define a binary spatial partitioning (BSP) tree structure
that has O(log n) depth. Variants of the k-d tree structure are distinguished
by the heuristic applied to determine the cut directions. In the original paper
by Bentley [3], the heuristic was to simply alternate between the d possible
directions in a round-robin fashion.

Friedman, Bentley, and Finkel [12] study an alternate definition, where the
cut is defined perpendicular to the direction with maximum spread, that is, the
direction where the difference between coordinate values in that direction in S
is largest. They show that for data distributions with bounded density, k-d trees
defined using this heuristic can achieveO(log n) expected query times for approx-
imate nearest-neighbor and range searching. Silva-Filho [17] studies the choosing
of a cutting hyperplane based on probabilistic considerations. Sproull [18] consid-
ers several other heuristics for k-d trees in practice. One standard simplification
is to use the following splitting rule:

The Longest Side Rule: Choose a splitting hyperplane perpendicular
to the longest side of the bounding box B.

This heuristic is often used in practice, since it is so simple to implement and
tends to mimic the behavior of the maximum-spread heuristic.

Bentley [4] reports on experimental results for k-d trees defined using the
maximum-spread heuristic, showing that for a variety of input distributions this
variation performs remarkably well for nearest-neighbor and other searches. We
are not familiar with any previous work that reports a non-trivial worst-case
1 We assume the dimension d is fixed throughout this paper.

K-D Trees Are Better when Cut on the Longest Side 181

upper bound for using a k-d tree for nearest-neighbor searching, however, or
even approximate nearest-neighbor searching. Still, for range searching queries,
where one wishes to count (or report) the points inside a given axis-parallel
hyper-rectangle, Lee and Wong [13] show that the standard k-d tree structure
can be used to achieve a worst-case query time of Θ(n(d−1)/d) (plus output size
in the reporting case). Silva-Filho [16] shows that this bound even holds in the
average case for range searching in the standard k-d tree structure.

Deviating from the strict k-d tree approach, there have been several data
structures developed for efficiently performing approximate nearest-neighbor
searching and range search queries. For example, fair-split trees [5], defined
by Callahan and Kosaraju, achieve logarithmic query time for approximate
nearest-neighbor searching, although the trees they define do not necessarily have
O(log n) depth. The balanced box-decomposition (BBD) trees of Arya et al. [2,1],
on the other hand, have O(log n) depth and have regions with good aspect ratio,
and achieve logarithmic-time performance for approximate nearest-neighbor and
range searching. The BBD tree deviates from the k-d tree approach by introduc-
ing holes into the middle of regions. The balanced-aspect ratio (BAR) trees of
Duncan, Goodrich, and Kobourov [9,10] achieve similar bounds to those of Arya
et al., but do so using simple hyperplane cuts at each internal node. However,
their BSP trees are not strictly k-d trees as the cuts need not be axis-aligned
and do not always equally subdivide the set of points in a region.

Previous work most similar to ours is a recent paper by Maneewongvatana
and Mount [14], which provides a packing lemma analogous to one we derive.
Their lemma is defined for a specific k-d tree splitting rule, called the sliding-
midpoint split, that allows the resulting k-d tree to have Θ(n) depth in the worst
case. Thus, it does not seem possible to use this tree to achieve polylogarith-
mic query times in the worst case for approximate nearest-neighbor and range
searching queries. In addition, the proof technique used by Maneewongvatana
and Mount is quite different from the one of this paper.

1.2 Our Results

In this paper, we present a general framework for proving that families of BSP
trees have good worst-case performance for approximate nearest-neighbor and
range searching queries. The framework is based on a relaxed form of the BAR
tree of Duncan, Goodrich, and Kobourov [9,10], which we call the quasi-BAR
tree. The most important component of our approach is that BSP trees falling
into our framework satisfy an important packing lemma, which implies efficient
performance of several approximate query operations. Since these structures are
straight-forward partitioning trees, we only need linear space to store them as
well.

In Section 3, we show that a k-d tree defined using the longest-side split-
ting rule falls into our quasi-BAR tree framework. Thus, longest-side k-d trees
consequently achieve polylogarithmic worst-case performance for approximat-
ing geometric queries. Although these bounds are certainly not better than the
logarithmic worst-case bounds of fair-split trees [5], BBD trees [2,1], and BAR

182 Matthew Dickerson et al.

trees [9,10], they are nonetheless intriguing for a number of reasons. For exam-
ple, many empirical results (e.g., see [4,8,12]) show that k-d trees defined with
the maximum-spread and longest-side splitting rules perform well in practice,
but no worst-case theoretical evidence has been given to support these observa-
tions. Our analysis shows that k-d trees defined by the longest-side splitting rule
require that we visit at most O(logd n) nodes in the worst case to answer any
approximate nearest-neighbor and range searching queries on a set of n points
in IRd, for any fixed constant d ≥ 1. We also show that such k-d trees perform
exact orthogonal range searches in the plane quite efficiently. We discuss the
main ideas behind these results in the sections that follow.

2 A Framework for BSP Trees with Packing Lemmas

Prior work indicates that the performances of BBD [2,1] and BAR [9,10] trees
are rooted mainly in the bounds from important packing lemmas. This property
is due to the manner in which standard BSP searching algorithms proceed down
a search tree to answer a given query. In this section we show how to extend
these previous specific packing lemmas into a framework for establishing packing
lemmas for other types of BSP trees. Thus, for the sake of completeness, let us
review some BSP search algorithms.

2.1 A Standard BSP Nearest-Neighbor Searching Algorithm

Let S be a set of n points in IRd, and let T be a BSP tree defined on S. We use
δ(p, q) to denote the distance between a point p and a point q in IRd. We often
refer to a node u in a given tree with an associated region Ru. In these cases,
for convenience we use δ(u, q) = δ(Ru, q), where δ(Ru, q) is the distance from q
to the region Ru.

Definition 2.1. For a set S of points in IRd, a query point q ∈ IRd, and ε > 0,
a point p ∈ S is a (1 + ε)-nearest neighbor of q if δ(p, q) ≤ (1 + ε)δ(p∗, q), where
p∗ is the true nearest neighbor to q.

In other words, such a p is within a constant error factor of the true nearest
neighbor. Given a query point p and an error parameter ε > 0 we can use the
following algorithm, which is similar to an algorithm of Arya et al. [2], to find
an approximate nearest-neighbor to p in S.

We initialize a priority queue Q with the root node of T . Let p be the current
nearest neighbor identified during our search, initially some point at∞. At every
stage, extract fromQ the node u that is the nearest to q. If (1+ε)δ(u, q) ≥ δ(p, q),
we exit and return p as the (1 + ε)-approximate nearest neighbor. The following
operations are repeated until the next node is extracted from Q. If u is not a
leaf, let u1 and u2 be u’s children. Without loss of generality, let u1 be the node
nearer to q, i.e. δ(u1, q) ≤ δ(u2, q). We insert u2 onto the queue and continue
with u1, bypassing the extraction process. If u is a leaf node, we let S′ = S ∩ u
be the (constant-size) set of data points in u. For all p′ ∈ S′, if δ(p′, q) < δ(p, q),
we let p← p′. We continue by extracting the next nearest node from Q.

K-D Trees Are Better when Cut on the Longest Side 183

Definition 2.2. For a set S of points in IRd, a query point q ∈ IRd, and ε > 0,
a point p ∈ S is a (1− ε)-farthest neighbor of q if δ(p, q) ≤ δ(p∗, q)− εD, where
p∗ is the true farthest neighbor to q and D is the diameter of the point set.

Definition 2.3. For a set S of points in IRd, a query region Q with diameter
OQ, and ε > 0, an ε-approximate range query returns (or counts) a set S′ such
that S ∩Q ⊆ S′ ⊆ S and for every point p ∈ S′, δ(p,Q) ≤ εOQ.

In the full version, we also review the standard BSP algorithms for finding
approximate farthest neighbors and approximate range searching.

2.2 Quasi-BAR Trees

A foundational construct in our quasi-BAR tree framework is the need to bound
non-trivially the number of regions piercing a set we call a region annulus.

Definition 2.4. For any region R, we define a region annulus with radius r
AR,r to be the set of all real points p ∈ IRd such that p /∈ R and δ(p,R) < r. A
region R′ pierces AR,r if and only if there exists two real points q1, q2 ∈ R′ such
that q1 ∈ R and q2 /∈ R ∪AR,r.

Basically, a region annulus is the set of points outside but near the border
of R. If R were a spherical region with radius r′, this would be the traditional
notion of an annulus with radii r′ and r′ + r, respectively. A region R′ pierces
this annulus if it lies partially inside R and partially farther than r away.

Definition 2.5. Given any region annulus A and BSP tree T , let PT (A) denote
the largest set of disjoint nodes in T whose associated regions pierce the region
annulus A. A class of binary space partitioning trees is a ρ(n)-quasi-BAR tree
if, for any tree T in the class constructed on a set S of n points in IRd and any
region annulus A, |PT (A)| ≤ ρ(n)VA/rd, where VA and r are the volume and
associated radius (intuitively, the “width”) of A, respectively (see Definition 2.4).

In other words, the number of nodes with regions intersecting an annulus
A in a quasi-BAR tree defined on a set of n points is bounded by a function
of n times the “relative thickness” of A. The advantage of the quasi-BAR tree
definition is that it allows us to prove the following theorems.

Theorem 2.6. Suppose we are given a ρ(n)-quasi-BAR tree T with depth DT =
Ω(log n) constructed on a set S of n points in IRd. For any query point q, the
standard search algorithms find respectively a (1+ε)-nearest and a (1−ε)-farthest
neighbor to q in O(ε1−dρ(n)DT) time.

Theorem 2.7. Suppose we are given a ρ(n)-quasi-BAR tree T with depth DT

constructed on a set S of n points in IRd. For any convex query region Q, one
can perform a counting (or reporting) ε-approximate range searching query in T
in O(ε1−dρ(n)DT) time (plus output size in the reporting case). For any general
non-convex query region Q, the time required is O(ε−dρ(n)DT) (plus output size).

184 Matthew Dickerson et al.

The proofs for these theorems follow directly from proofs in Arya et al. [2]
and Duncan et al. [10]. The main concept is in proving that all visited “leaf”
nodes pierce a region annulus A such that VA/rd = O(ε1−d). We leave the proof
for the full version of the paper.

So long as a class of trees satisfies a packing lemma, we can allow for skinny
regions and still achieve good worst-case performance in several approximate
geometric queries. The important feature in such cases is to minimize the pack-
ing function ρ(n). The difficulty is in developing a data structure that actually
guarantees a non-trivial packing function. Surprisingly, such a structure already
exists and is a commonly used k-d tree variant.

3 Longest-Side K-d Trees

“... just don’t have too many other skinny friends.”

We begin our proof of the existence of a non-trivial quasi-BAR tree by re-
viewing the definition of the longest-side k-d tree. We show that these regions,
which may be skinny, do not have many skinny regions nearby of comparable
size.

Definition 3.1. The longest-side k-d tree is the tree constructed by recursively
dividing the point set associated with each node u in half by cutting perpendicular
to the longest axis-orthogonal side of Ru.

The establishment of a non-trivial packing function ρ(n) for the longest-side
k-d trees depends upon the following Hypercube Stabbing Lemma, whose proof
technique may potentially be of use in analyzing other BSP trees.

Lemma 3.2 (Hypercube Stabbing Lemma). Suppose we are given a longest-
side k-d tree T constructed on a set S of n points in IRd. Let L be the largest set
of disjoint nodes in T such that every region in L intersects at least two opposing
sides of a hypercube H. Then |L| is O(logd−1 n).

Proof. Let h be the side length of H . Let us assume, wlog, that the hypercube
H is fully contained in the region R associated with the root of T . To generate
the largest set L of disjoint nodes in T intersecting at least two opposing sides of
H , we first observe that if a node intersects a side of H then all of its ancestors
must also intersect this side. Therefore, L consists of all nodes in T none of
whose children intersect two opposing sides of H . We now show that |L| is
O(2d logd−1 n).

For this analysis, let us classify a node u in T and its associated region
Ru by the number of sides of H that Ru intersects. In particular, let the class
C(i, j) denote the set of regions in T such that each region R intersects i pair of
opposing sides of H and j other sides (that is, without their “partners” in the
same direction). Notice that i + j ≤ d. More importantly, for any region in L
belonging to class C(i, j) we know i ≥ 1 (by the definition of L). Also, note that
the root of T is in the class C(d, 0).

K-D Trees Are Better when Cut on the Longest Side 185

(c)

(3)

(b)

(2)

(a) (d) (e)

(2)

(1) (1) (1)
(2)

Fig. 1. The various possibilities for the class C in the plane. The hypercube H is
shown in outline while a region in T is shown shaded. We label the various cuts
by the classes of child regions they produce. Examples of classes (a) C(2, 0), (b)
C(1, 1), and (c) C(1, 0). Regions (d) and (e) cannot be in L because they do not
intersect two opposing sides

Let R, associated with some internal node v in T , be a region belonging to
class C(i, j). Since we are only concerned with regions intersecting at least one
pair of opposing sides of H , we look at those cases where i ≥ 1. For the cut
c that divides R into two subregions R1 and R2, consider the possible cases of
classes to which the two children belong.

1. The cut c may be entirely outside of H . In this case, one of v’s child regions,
say R2, lies entirely outside of H . Hence, R2 ∈ C(0, 0) and R1 ∈ C(i, j).

2. The cut c intersects the inside of H and is perpendicular to a dimension in
which the region R spans H on both sides. In this case, both R1 and R2

intersect H but with i− 1 opposing pairs and j + 1 other sides. Therefore,
R1, R2 ∈ C(i− 1, j + 1).

3. The cut c intersects the inside of H and is perpendicular to a dimension in
which the regionR intersects H on just one side. In this case, both R1 and R2

intersect H . Moreover, both R1 and R2 have the same number of dimensions
in which they span H on both sides. One of these regions, however, has one
fewer dimension in which it spans H on a single side. That is, without loss
of generality, R1 ∈ C(i, j) and R2 ∈ C(i, j − 1).

We argue that these are all the possible cases. Case 1 includes all cuts that
do not intersect H . If the cut intersects the inside of H , then it is perpendicular
to some dimension, k. Along the dimension k, the region R must intersect 2 sides
of H , 1 side of H , or 0 sides of H . The first two of these possibilities are covered
by Cases 2 and 3 above. The last possibility cannot occur, however, because of
the longest-side splitting rule. In particular, if a region R intersects two opposing
sides of H , then the longest side of R is at least h, but the side of R in dimension
k must have length less than h.

We can now proceed to our evaluation by utilizing a recurrence relation. Let
u be a node in T whose associated region R is in C(i, j). We define c(u, i, j) to
be the largest number of disjoint regions associated with descendents of u which
intersect at least one pair of opposing sides of H . In other words, every region
belongs to a class C(i′, j′) for some i′ ≥ 1. Let u1 and u2 be u’s two children.

186 Matthew Dickerson et al.

The recurrence follows directly from the three cases above:

c(u, i, j) = max

c(u1, i, j)
c(u1, i− 1, j + 1) + c(u2, i− 1, j + 1)
c(u1, i, j) + c(u2, i, j − 1)

Our base cases occur either when u is a leaf lu (u1 and u2 do not exist) or
when i = 0. In the former c(lu, i, j) = 1. In the latter c(u, 0, j) = 0 by definition.

We use induction to show that c(u, i, j) ≤ 2i(log |u|)i+j−1, where |u| is the
number of points in the subtree rooted at u. For convenience, we maintain that
every leaf node has at least two points in it. This simply implies that log |u| ≥ 1.
We also assume that |u| is an even number, therefore, |u1| = |u2| = |u|/2.
The base cases follow from brute force. Our analysis relies on two fundamental
inequalities for a ≥ 1:

ab ≥ (a− 1)b For b ≥ 0
ab ≥ (a− 1)b + (a− 1)b−1 For b ≥ 1

We show that the inductive case holds for any of the three possible recurrences.
If u is not a leaf node, log |u| ≥ 1, and since i ≥ 1, we know that i+ j − 1 ≥ 0.
Case 1. Let c(u, i, j) = c(u1, i, j). Using our inductive hypothesis, we have

c(u, i, j) = c(u1, i, j)
≤ 2i(log |u1|)i+j−1

= 2i(log |u| − 1)i+j−1

≤ 2i(log |u|)i+j−1.

Case 2. Let c(u, i, j) = c(u1, i− 1, j + 1) + c(u2, i− 1, j + 1). By induction,

c(u, i, j) = c(u1, i− 1, j + 1) + c(u2, i− 1, j + 1)
≤ 2i−1(log |u1|)i+j−1 + 2i−1(log |u2|)i+j−1

= 2i(log |u| − 1)i+j−1

≤ 2i(log |u|)i+j−1.

Case 3. Let c(u, i, j) = c(u1, i, j) + c(u2, i, j − 1). In this case, recall that the
cut lies in a direction in which the region Ru intersects H on only one side. This
implies that j ≥ 1 and thus that i+ j − 1 ≥ 1. Again by induction,

c(u, i, j) = c(u1, i, j) + c(u2, i, j − 1)
≤ 2i(log |u1|)i+j−1 + 2i(log |u2|)i+j−2

= 2i(log |u| − 1)i+j−1 + 2i(log |u| − 1)i+j−2

≤ 2i(log |u|)i+j−1.

The solution to the recurrence relation is now proven. We only need to recall
that the region associated with the root of the tree T spans H on both sides in
every dimension. Thus, |L| ≤ c(T, d, 0) ≤ 2d(logn)d−1. �

K-D Trees Are Better when Cut on the Longest Side 187

This Hypercube Stabbing Lemma might at first seem to be unrelated to the
definition of a quasi-BAR tree, which depends heavily on the notion of a region
annulus, but this is not the case, as we show in the following theorem.

Theorem 3.3. Suppose we are given a longest-side k-d tree T constructed on a
set S of n points in IRd. Then the packing function ρ(n) of T for a region annulus
A is O(logd−1 n). That is, the class of longest-side k-d trees is an O(logd−1 n)-
quasi-BAR tree.

Proof. Let L be a set of disjoint regions from T piercing A = AQ,r. Let R ∈ L be
any such region piercing A. Notice that OR ≥ r/2; therefore, we know that the
longest side of the bounding box of R is certainly greater than r/

√
d. Let H be

the smallest set of disjoint hypercubes with side length r/(2
√
d) that completely

cover A. Notice that |H| is O(VA/rd). Now, any region R that pierces A must
intersect two opposing sides of at least one hypercube in H (see Figure 2). For
any hypercube H ∈ H, let L′ ⊆ L be the subset of regions in L that intersect
two opposing sides of H . From the Hypercube Stabbing Lemma (3.2), we know
that |L′| = O(logd−1 n). Therefore, we know that

|PT (A)| = |L| = |L′||H| ≤ c logd−1 nVA/rd,

for some constant c > 0. From Definition 2.5, the class of longest-side k-d trees
is therefore an O(logd−1 n)-quasi-BAR tree. �

Outside A and B

Inside B

Fig. 2. An annulus A with associated region B. Any region in L, shown here
with dashed lines, must cross two opposing sides of one of the hypercube boxes
inside A

4 Applications

The theorems from previous sections immediately imply additional corollaries.

Corollary 4.1. Suppose we are given a longest-side k-d tree T constructed on
a set S of n points in IRd. For any query point q, the standard algorithms for
finding respectively a (1 + ε)-nearest or a (1 − ε)-farthest neighbor to q run in
O(ε1−d logd n) time in the worst case.

188 Matthew Dickerson et al.

Corollary 4.2. Suppose we are given a longest-side k-d tree T constructed
on a point set S in IRd. For any convex query region, the standard algorithm
for counting (or reporting) in an ε-approximate range searching query runs in
O(ε1−d logd n) worst-case time (plus output size in the reporting case). For any
general query region, the worst-case time required is O(ε−d logd n) (plus output
size).

4.1 Exact Range-Searching in the Plane

In IR2, there is an additional interesting result that can also be proven for the
longest-side k-d tree if we enhance each node’s region to maintain the bounding
box of the point set in the region, rather than just the region itself. We define
the bounding box of a region to be the smallest axis-orthogonal box containing
all points in the region. This assumption induces only a constant factor overhead
and is also common in practice because of the time and space saved. Using this
enhancement, we can actually show that any orthogonal range query in IR2 can
be answered exactly with a running time dependent only on the set size and
the aspect ratio of the query. Thus, if the query region is fat, that is, has a low
aspect ratio, then the running time becomes polylogarithmic.

Theorem 4.3. Suppose we are given a bounding-box longest-side k-d tree T
constructed on a set S of n points in IR2. Let Q be any orthogonal query region
with dimensions wx and wy and wlog let wx ≥ wy. The standard range searching
algorithm reports an exact orthogonal range query in O((wx/wy) log2 n+k logn)
time, where k is number of points reported.

Proof. Let us begin by breaking the region Q into α = �wx/wy� squares, labeled
Qi. Notice that each square has side length wy (see Figure 3a). Let L be the
set of all visited nodes which are neither trivially accepted nor rejected. Recall
that a node is trivially accepted if it lies completely within the query region Q
and trivially rejected if it does not intersect Q. The nodes in L are then exactly
those nodes which do partially intersect Q. Let L′ be the subset of L such that
for any node u ∈ L with child nodes ul and ur, u ∈ L′ if and only if ul, ur /∈ L.
Let L′′ ⊆ L′ be the set of nodes in L′ which intersect two opposing sides of Q.
Furthermore, let Li ⊆ L′′ be the set of nodes in L′′ which intersect two opposing
sides of Qi. From the Hypercube Stabbing Lemma (3.2), we know that |Li| is
O(log n). Thus, |L′′| is O(α logn).

Let us now look at the set K = L′ \L′′. This is a disjoint set of nodes which
intersect Q but do not intersect two opposing sides. First, notice that there can
be at most 4 nodes in K which intersect two sides of Q, namely the four regions
at the corners (see Figure 3b). We now use the bounding box enhancement. If
the bounding box of a region R intersects only one side of Q, then there must
exist a point p in R which lies inside of Q. Therefore, we know that |K| ≤ k+4.

If we combine our results, we see that

|L| ≤ |L′| logn = (|L′′|+ |K|) logn ∈ O(α log2 n+ k logn).

Consequently, the running time is O(|L|+ k) = O(α log2 n+ k logn). �

K-D Trees Are Better when Cut on the Longest Side 189

(a) (b)

Fig. 3. (a) Breaking a region into a chain of squares. (b) A particular square
showing potential region intersections not intersecting at least two opposing
sides. The original regions prior to the bounding box are shown dashed. No-
tice only one type can intersect the square without being at a corner, and this
intersection must contain a point of S

This result, although surprising, is still not better than the range searching
data structure of Chazelle [6], which performs exact queries in the plane in
O(log n) time and O(n) space regardless of the aspect ratio of the query. It is
simply interesting to note that such exact queries are achievable using a widely-
used k-d tree data structure.

5 Conclusion

In this paper, we have developed a general framework for BSP trees that satisfy
a packing lemma that qualifies them to be quasi-BAR trees. We also described
some important applications that can be solved using this type of tree. In partic-
ular, we showed that the well-known longest-side k-d tree falls into this frame-
work and is, therefore, capable of polylogarithmic time approximation queries.
Although certainly not a theoretical improvement on the BBD tree structure [2,1]
or the BAR tree structure [9,10], this result helps explain why longest-side k-d
trees perform well in practice.

Several researchers [4,15,19] have studied the dynamic behavior of k-d trees,
where items can be inserted and/or removed. A natural open question, then, is
whether one can show if a natural dynamic variant of the k-d tree fits into our
quasi-BAR tree framework and exhibits worst-case polylogarithmic update times
and worst-case polylogarithmic query times for approximate nearest-neighbor
and range searching. Another natural open question is whether any other vari-
ations of the k-d tree, such as maximum-spread, are ρ(n)-quasi-BAR trees for
some polylogarithmic ρ(n) function.

Acknowledgement

We would like to thank David Mount for several helpful conversations relating
to the topics of this paper.

190 Matthew Dickerson et al.

References

1. S. Arya and D. M. Mount. Approximate range searching. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., pages 172–181, 1995. 181, 182, 189

2. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. In Proc. 5th ACM-SIAM
Sympos. Discrete Algorithms, pages 573–582, 1994. 181, 182, 184, 189

3. J. L. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, 1975. 180

4. J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Annu. ACM
Sympos. Comput. Geom., pages 187–197, 1990. 180, 182, 189

5. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42:67–90, 1995. 181

6. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput., 17:427–462, 1988. 189

7. J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan. Relaxed heaps: An
alternative to Fibonacci heaps with applications to parallel computation. Commun.
ACM, 31:1343–1354, 1988.

8. C. A. Duncan. Balanced Aspect Ratio Trees. Ph.D. thesis, Dept. of Computer
Science, Johns Hopkins Univ., 1999. 182

9. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect ratio trees
and their use for drawing very large graphs. In Proc. Graph Drawing ’98, LNCS
1547, pages 111–124. Springer-Verlag, 1998. 181, 182, 189

10. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced aspect ratio trees:
Combining the advantages of k-d trees and octrees. In Proc. 10th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 300–309, 1999. 181, 182, 184, 189

11. M. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization problems. J. ACM, 34:596–615, 1987.

12. J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3:209–226, 1977.
180, 182

13. D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees. Acta
Inform., 9:23–29, 1977. 181

14. S. Maneewongvatana and D. M. Mount. It’s okay to be skinny, if your friends are
fat. In 4th Annual CGC Workshop on Computational Geometry, 1999. 179, 181

15. M. H. Overmars and J. van Leeuwen. Dynamic multi-dimensional data structures
based on quad- and k-d trees. Acta Inform., 17:267–285, 1982. 189

16. Y. V. Silva Filho. Average case analysis of region search in balanced k-d trees.
Inform. Process. Lett., 8:219–223, 1979. 181

17. Y. V. Silva Filho. Optimal choice of discriminators in a balanced k-d binary search
tree. Inform. Process. Lett., 13:67–70, 1981. 180

18. R. F. Sproull. Refinements to nearest-neighbor searching. Algorithmica, 6:579–589,
1991. 180

19. M. J. van Kreveld and M. H. Overmars. Divided k-d trees. Algorithmica, 6:840–858,
1991. 189

	Introduction
	Prior Related Work
	Our Results

	A Framework for BSP Trees with Packing Lemmas
	A Standard BSP Nearest-Neighbor Searching Algorithm
	Quasi-BAR Trees

	Longest-Side K-d Trees
	Applications
	Exact Range-Searching in the Plane

	Conclusion

