
V. Greedy Algorithms
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Greedy algorithms – Overview

I Algorithms for solving (optimization) problems typically go through a
sequence of steps, with a set of choices at each step.

I A greedy algorithm always makes the choice that looks best at the
moment, without regard for future consequence,
i.e., “take what you can get now” strategy

I Greedy algorithms do not always yield optimal solutions,

Local optimum =⇒? Global optimum

but for many problems they do.
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Activity-selection problem

Problem statement:

Input: Set S = {1, 2, . . . , n} of n activities
si = start time of activity i
fi = finish time of activity i

Output: Maximum-size subset A ⊆ S of compatible activities

Remarks:

I Activities i and j are compatible if the intervals [si, fi) and [sj , fj) do
not overlap.

I Without loss of generality, assume

f1 ≤ f2 ≤ · · · ≤ fn
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Activity-selection problem

Example

i si fi
1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
10 2 13
11 12 14

A = {1, 4, 8, 11} is an optimal (why?) solution.
A = {2, 4, 9, 11} is also an optimal solution.
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Activity-selection problem

Greedy algorithm:

I pick the compatible activity with the earliest finish time.

Why?

I Intuitively, this choice leaves as much opportunity as possible for the
remaining activities to be scheduled

I That is, the greedy choice is the one that maximizes the amount of
unscheduled time remaining.
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Activity-selection problem

Greedy_Activity_Selector(s,f)

n = length(s)

A = {1}

j = 1

for i = 2 to n

if s[i] >= f[j]

A = A U {i}

j = i

end if

end for

return A

Remarks

I Assume the array f already sorted

I Complexity: T (n) = O(n)
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Activity-selection problem

Example

i si fi
1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
10 2 13
11 12 14

Solution A = {1, 4, 8, 11} by Greedy Activity Selector.
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Activity-selection problem

Question: Does Greedy Activity Selector work?

Answer: Yes!

Theorem. Algorithm Greedy Activity Selector produces a solution of
the activity-selection problem.
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Activity-selection problem

The proof of Theorem is based on the following two properties:

Property 1.

There exists an optimal solution A such that the greedy choice
“1” in A.

Proof:

I let’s order the activities in A by finish time such that the first
activity in A is “k1”.

I If k1 = 1, then A begins with a greedy choice
I If k1 6= 1, then let A′ = (A− {k1}) ∪ {1}.

Then
1. the sets A− {k1} and {1} are disjoint
2. the activities in A′ are compatible
3. A′ is also optimal, since |A′| = |A|

I Therefore, we conclude that there always exists an optimal
solution that begins with a greedy choice.
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Activity-selection problem

Property 2.

If A is an optimal solution, then A′ = A− {1} is an optimal
solution to S′ = {i ∈ S, s[i] ≥ f [1]}.

Proof: By contradiction. If there exists B′ to S′ such that
|B′| > |A′|, then let

B = B′ ∪ {1},

we have
|B| > |A|,

which is contradicting to the optimality of A.
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Activity-selection problem

Proof of Theorem: By Properties 1 and 2, we know that

I After each greedy choice is made, we are left with an optimization
problem of the same form as the original.

I By induction on the number of choices made, making the greedy
choice at every step proceduces an optimal solution.

Therefore, the Greedy Activity Selector produces an optimal solution
of the activity-selection problem.
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Activity-selection problem

I Property 1 is called the greedy-choice property, generally casted as

a globally optimal solution can be arrived at by making a
locally optimal (greedy) choice.

I Property 2 is called the optimal substructure property, generally
casted as

an optimal solution to the problem contains within it optimal
solution to subprograms.

These are two key properties for the success of greedy algorithms!
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