
Breadth-First Search (BFS)

I For searching a graph and the archetype for many important graph
algorithms

I Input: G = (V,E) and a source vertex s,

Output: d[v] = distance from s to v for all v ∈ V .

I distance = fewest number of edges = shortest path

I BFS basic idea:

I discovers all vertices at distance k from the source vertex before
discovering any vertices at distance k + 1

I expanding frontier – “greedy” – propagate a wave 1 edge-distance at a
time.

1 / 4

Breadth-First Search (BFS)

I For searching a graph and the archetype for many important graph
algorithms

I Input: G = (V,E) and a source vertex s,

Output: d[v] = distance from s to v for all v ∈ V .

I distance = fewest number of edges = shortest path

I BFS basic idea:

I discovers all vertices at distance k from the source vertex before
discovering any vertices at distance k + 1

I expanding frontier – “greedy” – propagate a wave 1 edge-distance at a
time.

1 / 4

Breadth-First Search (BFS)

I For searching a graph and the archetype for many important graph
algorithms

I Input: G = (V,E) and a source vertex s,

Output: d[v] = distance from s to v for all v ∈ V .

I distance = fewest number of edges = shortest path

I BFS basic idea:

I discovers all vertices at distance k from the source vertex before
discovering any vertices at distance k + 1

I expanding frontier – “greedy” – propagate a wave 1 edge-distance at a
time.

1 / 4

Breadth-First Search (BFS)

I For searching a graph and the archetype for many important graph
algorithms

I Input: G = (V,E) and a source vertex s,

Output: d[v] = distance from s to v for all v ∈ V .

I distance = fewest number of edges = shortest path

I BFS basic idea:

I discovers all vertices at distance k from the source vertex before
discovering any vertices at distance k + 1

I expanding frontier – “greedy” – propagate a wave 1 edge-distance at a
time.

1 / 4

Breadth-First Search (BFS)

I For searching a graph and the archetype for many important graph
algorithms

I Input: G = (V,E) and a source vertex s,

Output: d[v] = distance from s to v for all v ∈ V .

I distance = fewest number of edges = shortest path

I BFS basic idea:

I discovers all vertices at distance k from the source vertex before
discovering any vertices at distance k + 1

I expanding frontier – “greedy” – propagate a wave 1 edge-distance at a
time.

1 / 4

Breadth-First Search (BFS)

I For searching a graph and the archetype for many important graph
algorithms

I Input: G = (V,E) and a source vertex s,

Output: d[v] = distance from s to v for all v ∈ V .

I distance = fewest number of edges = shortest path

I BFS basic idea:

I discovers all vertices at distance k from the source vertex before
discovering any vertices at distance k + 1

I expanding frontier – “greedy” – propagate a wave 1 edge-distance at a
time.

1 / 4

Review: queue and stack data structure

I Queues and stacks are dynamic sets in which the elements removed
from the set is prescribed.

I The queue implements a First-In-First-Out (FIFO) policy.
The stack implements a Last-In-First-Out (LIFO) policy.

I Queue supports the following operations:
Enqueue(Q,v): insert element v into the queue Q
Dequeue(Q,v): delete element v from the queue Q

I There are several efficient ways to implement queues and stacks, see
section 10.1.

2 / 4

Review: queue and stack data structure

I Queues and stacks are dynamic sets in which the elements removed
from the set is prescribed.

I The queue implements a First-In-First-Out (FIFO) policy.
The stack implements a Last-In-First-Out (LIFO) policy.

I Queue supports the following operations:
Enqueue(Q,v): insert element v into the queue Q
Dequeue(Q,v): delete element v from the queue Q

I There are several efficient ways to implement queues and stacks, see
section 10.1.

2 / 4

Review: queue and stack data structure

I Queues and stacks are dynamic sets in which the elements removed
from the set is prescribed.

I The queue implements a First-In-First-Out (FIFO) policy.
The stack implements a Last-In-First-Out (LIFO) policy.

I Queue supports the following operations:
Enqueue(Q,v): insert element v into the queue Q
Dequeue(Q,v): delete element v from the queue Q

I There are several efficient ways to implement queues and stacks, see
section 10.1.

2 / 4

Review: queue and stack data structure

I Queues and stacks are dynamic sets in which the elements removed
from the set is prescribed.

I The queue implements a First-In-First-Out (FIFO) policy.
The stack implements a Last-In-First-Out (LIFO) policy.

I Queue supports the following operations:
Enqueue(Q,v): insert element v into the queue Q
Dequeue(Q,v): delete element v from the queue Q

I There are several efficient ways to implement queues and stacks, see
section 10.1.

2 / 4

Review: queue and stack data structure

I Queues and stacks are dynamic sets in which the elements removed
from the set is prescribed.

I The queue implements a First-In-First-Out (FIFO) policy.
The stack implements a Last-In-First-Out (LIFO) policy.

I Queue supports the following operations:
Enqueue(Q,v): insert element v into the queue Q
Dequeue(Q,v): delete element v from the queue Q

I There are several efficient ways to implement queues and stacks, see
section 10.1.

2 / 4

Breadth-First Search (BFS)
BFS(G,s)

for each vertex u in V-{s}

d[u] = +infty

endfor

d[s] = 0

Q = empty // create FIFO queue

Enqueue(Q, s)

while Q not empty

u = Dequeue(Q)

for each v in Adj[u]

if d[v] = +infty

d[v] = d[u] + 1

Enqueue(Q, v)

endif

endfor

endwhile

return d

3 / 4

Breadth-First Search (BFS)

I Breadth-First spanning tree

I Running time: O(|V |+ |E|)

O(|V |): every vertex enqueued at most once

O(|E|): every vertex dequeued at most once and we examine (u, v)
only when u is dequeued at most once if directed, at most twice if
undirected.

Note: not Θ(|V |+ |E|)!

I Correctness of BFS
shortest path proof – see pp.597-600 of [CLRS,3rd ed.]
similar with weighted edges – Dijkstra’s algorithm – to be discussed

4 / 4

Breadth-First Search (BFS)

I Breadth-First spanning tree

I Running time: O(|V |+ |E|)

O(|V |): every vertex enqueued at most once

O(|E|): every vertex dequeued at most once and we examine (u, v)
only when u is dequeued at most once if directed, at most twice if
undirected.

Note: not Θ(|V |+ |E|)!

I Correctness of BFS
shortest path proof – see pp.597-600 of [CLRS,3rd ed.]
similar with weighted edges – Dijkstra’s algorithm – to be discussed

4 / 4

Breadth-First Search (BFS)

I Breadth-First spanning tree

I Running time: O(|V |+ |E|)

O(|V |): every vertex enqueued at most once

O(|E|): every vertex dequeued at most once and we examine (u, v)
only when u is dequeued at most once if directed, at most twice if
undirected.

Note: not Θ(|V |+ |E|)!

I Correctness of BFS
shortest path proof – see pp.597-600 of [CLRS,3rd ed.]
similar with weighted edges – Dijkstra’s algorithm – to be discussed

4 / 4

Breadth-First Search (BFS)

I Breadth-First spanning tree

I Running time: O(|V |+ |E|)

O(|V |): every vertex enqueued at most once

O(|E|): every vertex dequeued at most once and we examine (u, v)
only when u is dequeued at most once if directed, at most twice if
undirected.

Note: not Θ(|V |+ |E|)!

I Correctness of BFS
shortest path proof – see pp.597-600 of [CLRS,3rd ed.]
similar with weighted edges – Dijkstra’s algorithm – to be discussed

4 / 4

Breadth-First Search (BFS)

I Breadth-First spanning tree

I Running time: O(|V |+ |E|)

O(|V |): every vertex enqueued at most once

O(|E|): every vertex dequeued at most once and we examine (u, v)
only when u is dequeued at most once if directed, at most twice if
undirected.

Note: not Θ(|V |+ |E|)!

I Correctness of BFS
shortest path proof – see pp.597-600 of [CLRS,3rd ed.]
similar with weighted edges – Dijkstra’s algorithm – to be discussed

4 / 4

