II. Growth of Functions and Asymptotic Notations

1/13

Study a way to describe the growth of functions in the limit – asymptotic efficiency

- Study a way to describe the growth of functions in the limit asymptotic efficiency
- Focus on what's important (leading factor) by abstracting lower-order terms and constant factors

- Study a way to describe the growth of functions in the limit asymptotic efficiency
- Focus on what's important (leading factor) by abstracting lower-order terms and constant factors
- Indicate running times of algorithms

- Study a way to describe the growth of functions in the limit asymptotic efficiency
- Focus on what's important (leading factor) by abstracting lower-order terms and constant factors

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Indicate running times of algorithms
- A way to compare "sizes" of functions

$$\begin{array}{l} O \approx \leq \\ \Omega \approx \geq \\ \Theta \approx = \end{array}$$

In addition,

 $o \approx < \omega \approx >$

Definition. g(n) is an asymptotic upper bound for f(n), denoted by

f(n) = O(g(n))

if there exist constants c and n_0 such that

 $0 \le f(n) \le cg(n)$ for $n \ge n_0$

Definition. g(n) is an asymptotic upper bound for f(n), denoted by

f(n) = O(g(n))

if there exist constants c and n_0 such that

$$0 \le f(n) \le cg(n)$$
 for $n \ge n_0$

• Example: Show that $2n + 10 = O(n^2)$.

Definition. g(n) is an asymptotic upper bound for f(n), denoted by

f(n) = O(g(n))

if there exist constants c and n_0 such that

$$0 \leq f(n) \leq cg(n) \quad \text{for } n \geq n_0$$

► Example: Show that $2n + 10 = O(n^2)$. Proof: Since $2n + 10 \le n^2$ for $n \ge 5$,

it is true for c = 1 and $n_0 = 5$.

Definition. g(n) is an asymptotic upper bound for f(n), denoted by

f(n) = O(g(n))

if there exist constants c and n_0 such that

$$0 \le f(n) \le cg(n)$$
 for $n \ge n_0$

• Example: Show that $2n + 10 = O(n^2)$. Proof: Since

 $2n+10 \le n^2$ for $n \ge 5$, it is true for c=1 and $n_0=5$.

Alternative proof: Observe that $2n + 10 \le 2n^2 + 10n^2 = 12n^2$ for $n \ge 1$, it is true for c = 12 and $n_0 = 1$.

(日) (部) (注) (注) (言)

3/13

More on O-notation

▶ O(g(n)) is a set of functions

 $O(g(n))=\{f(n): \ \exists \ c,n_0 \ \text{ s.t. } 0\leq f(n)\leq cg(n) \ \text{ for } n\geq n_0\}$

More on O-notation

• O(g(n)) is a set of functions

 $O(g(n))=\{f(n): \ \exists \ c,n_0 \ \text{ s.t. } 0\leq f(n)\leq cg(n) \ \text{ for } n\geq n_0\}$

4/13

- Examples of functions in $O(n^2)$:
 - $\blacktriangleright \ n^2 + n$
 - ▶ $n^2 + 1000n$
 - ▶ $1000n^2 + 1000n$
 - ▶ n/1000
 - ▶ $n^2/\lg n$

Ω -notation

▶ Definition. g(n) is an asymptotic lower bound for f(n), denoted by

 $f(n) = \Omega(g(n))$

if there exist constants c and n_0 such that

 $0 \leq {\color{black}{c}}{g(n)} \leq f(n) \quad \text{for } n \geq {\color{black}{n_0}}$

Ω -notation

 Definition. g(n) is an asymptotic lower bound for f(n), denoted by

$$f(n) = \Omega(g(n))$$

if there exist constants c and n_0 such that

$$0 \leq cg(n) \leq f(n) \quad \text{for } n \geq n_0$$

► Example

•
$$\sqrt{n} = \Omega(\lg n)$$
 by picking $c = 1$ and $n_0 = 16$

More on Ω -notation

• $\Omega(g(n))$ is a set of functions

 $\varOmega(g(n))=\{f(n): \ \exists \ c,n_0 \ \text{ s.t. } 0\leq cg(n)\leq f(n) \ \text{ for } n\geq n_0\}$

More on $\varOmega\text{-notation}$

• $\Omega(g(n))$ is a set of functions

 $\varOmega(g(n))=\{f(n): \ \exists \ c,n_0 \ \text{ s.t. } 0\leq cg(n)\leq f(n) \ \text{ for } n\geq n_0\}$

6/13

- Examples of functions in $\Omega(n^2)$:
 - \blacktriangleright n^2
 - ► $n^2 + n$
 - ► $n^2 n$
 - ▶ $1000n^2 + 1000n$
 - ▶ $1000n^2 1000n$
 - ► n^{2.00001}
 - ► $n^2 \lg n$
 - \triangleright n^3

Definition. g(n) is an asymptotic tight bound for f(n), denoted by

 $f(n) = \Theta(g(n))$

if there exist constants c_1 , c_2 and n_0 such that

$$0 \leq {\color{black} c_1} g(n) \leq f(n) \leq {\color{black} c_2} g(n)$$

for $n \geq n_0$.

Definition. g(n) is an asymptotic tight bound for f(n), denoted by

 $f(n) = \Theta(g(n))$

if there exist constants c_1 , c_2 and n_0 such that

$$0 \leq {\color{black} c_1}g(n) \leq f(n) \leq {\color{black} c_2}g(n)$$

for $n \geq n_0$.

► Example:

$$\blacktriangleright \quad \frac{1}{2}n^2 - 2n = \Theta(n^2)$$

Definition. g(n) is an asymptotic tight bound for f(n), denoted by

 $f(n) = \Theta(g(n))$

if there exist constants c_1 , c_2 and n_0 such that

$$0 \leq {\color{black} c_1}g(n) \leq f(n) \leq {\color{black} c_2}g(n)$$

for $n \geq n_0$.

► Example:

•
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

Since we can pick $c_1 = \frac{1}{4} c_2 = \frac{1}{2}$ and $n_0 = 8$.

Definition. g(n) is an asymptotic tight bound for f(n), denoted by

$$f(n) = \Theta(g(n))$$

if there exist constants c_1 , c_2 and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

for $n \geq n_0$.

► Example:

•
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

Since we can pick $c_1 = \frac{1}{4} c_2 = \frac{1}{2}$ and $n_0 = 8$.
• If $p(n) = \sum_{i=1}^d a_i n^i$ and $a_d > 0$, then $p(n) = \Theta(n^d)$

More on Θ -notation

• $\Theta(g(n))$ is a set of functions

 $\begin{array}{l} \varTheta(g(n)) = \\ \{f(n): \ \exists \ c_1, c_2, n_0 \ \ \text{s.t.} \ \ 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \ \ \text{for} \ n \geq n_0 \} \end{array}$

More on Θ -notation

• $\Theta(g(n))$ is a set of functions

 $\begin{array}{l} \varTheta(g(n)) = \\ \{f(n): \ \exists \ c_1, c_2, n_0 \ \ \text{s.t.} \ \ 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \ \ \text{for} \ n \geq n_0 \} \end{array}$

- Examples of functions in $\Theta(n^2)$:
 - \triangleright n^2
 - \blacktriangleright $n^2 + n$
 - ► $n^2 n$
 - ▶ $1000n^2 + 1000n$
 - ▶ $1000n^2 1000n$

Theorem

Theorem. O and Ω iff Θ .

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 10/13

In order to determine the relationship between $f(\boldsymbol{n})$ and $g(\boldsymbol{n}),$ it is often usefuly to examine

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$$

In order to determine the relationship between $f(\boldsymbol{n})$ and $g(\boldsymbol{n})\text{, it is often usefuly to examine}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$$

In order to determine the relationship between $f(\boldsymbol{n})$ and $g(\boldsymbol{n})\text{, it is often usefuly to examine}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$$

The possible outcomes:

1. L = 0: f(n) = O(g(n))

In order to determine the relationship between $f(n) \mbox{ and } g(n),$ it is often usefully to examine

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$$

10/13

- 1. L = 0: f(n) = O(g(n))
- **2**. $L = \infty$: $f(n) = \Omega(g(n))$

In order to determine the relationship between $f(n) \mbox{ and } g(n),$ it is often usefully to examine

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$$

- 1. L = 0: f(n) = O(g(n))
- **2**. $L = \infty$: $f(n) = \Omega(g(n))$
- 3. $L \neq 0$ is finite: $f(n) = \Theta(g(n))$

In order to determine the relationship between $f(n) \mbox{ and } g(n),$ it is often usefully to examine

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$$

- 1. L = 0: f(n) = O(g(n))
- 2. $L = \infty$: $f(n) = \Omega(g(n))$
- 3. $L \neq 0$ is finite: $f(n) = \Theta(g(n))$
- 4. There is no limit: this technique cannot be used to determine the asymptotic relationship between f(n) and g(n).

Review: L'Hopital's rule

L'Hopital's rule. Let f(x) and g(x) be differential functions with derivatives f'(x) and g'(x), respectively, such that

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty.$$

Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1.
$$f(n) = n^2$$
 and $g(n) = n \lg n$

1.
$$f(n) = n^2$$
 and $g(n) = n \lg n$

 $n^2 = \Omega(n \lg n)$

1.
$$f(n) = n^2$$
 and $g(n) = n \lg n$

$$n^2 = \Omega(n \lg n)$$

2. $f(n) = n^{100}$ and $g(n) = 2^n$

1.
$$f(n) = n^2$$
 and $g(n) = n \lg n$

$$n^2 = \Omega(n \lg n)$$

2. $f(n) = n^{100}$ and $g(n) = 2^n$

 $n^{100} = O(2^n)$

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

12/13

1.
$$f(n) = n^2$$
 and $g(n) = n \lg n$

$$n^2 = \Omega(n \lg n)$$

2.
$$f(n) = n^{100}$$
 and $g(n) = 2^n$

$$n^{100} = O(2^n)$$

3.
$$f(n) = 10n(n+1)$$
 and $g(n) = n^2$

1.
$$f(n) = n^2$$
 and $g(n) = n \lg n$

$$n^2 = \Omega(n \lg n)$$

2.
$$f(n) = n^{100}$$
 and $g(n) = 2^n$

$$n^{100} = O(2^n)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

12/13

3.
$$f(n) = 10n(n+1)$$
 and $g(n) = n^2$
$$10n(n+1) = \Theta(n^2)$$

Reading assiment

Read Section 3.2 of the textbook to review Standard notations and common functions

- 1. Monotonicity
- 2. Floors and ceilings
- 3. Modular arithmetic
- 4. Polynomials
- 5. Exponentials
- 6. Logarithms
- 7. Factorials