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Overview

I Study a way to describe the growth of functions in the limit –
asymptotic efficiency

I Focus on what’s important (leading factor) by abstracting lower-order
terms and constant factors

I Indicate running times of algorithms

I A way to compare “sizes” of functions

O ≈ ≤
Ω ≈ ≥
Θ ≈ =

In addition,

o ≈ <
ω ≈ >
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O-notation

I Definition. g(n) is an asymptotic upper
bound for f(n), denoted by

f(n) = O(g(n))

if there exist constants c and n0 such
that

0 ≤ f(n) ≤ cg(n) for n ≥ n0

I Example: Show that 2n+ 10 = O(n2).
Proof: Since

2n+ 10 ≤ n2 for n ≥ 5,
it is true for c = 1 and n0 = 5.

Alternative proof: Observe that
2n+ 10 ≤ 2n2 + 10n2 = 12n2 for n ≥ 1,

it is true for c = 12 and n0 = 1.

3.1 Asymptotic notation 45
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Figure 3.1 Graphic examples of the ‚, O , and � notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/

inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) �-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D �.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/

lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n � n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.
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More on O-notation

I O(g(n)) is a set of functions

O(g(n)) = {f(n) : ∃ c, n0 s.t. 0 ≤ f(n) ≤ cg(n) for n ≥ n0}

I Examples of functions in O(n2):

I n2 + n
I n2 + 1000n
I 1000n2 + 1000n
I n/1000
I n2/ lgn
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Ω-notation

I Definition. g(n) is an asymptotic lower
bound for f(n), denoted by

f(n) = Ω(g(n))

if there exist constants c and n0 such
that

0 ≤ cg(n) ≤ f(n) for n ≥ n0

I Example

I
√
n = Ω(lgn) by picking c = 1 and

n0 = 16
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More on Ω-notation

I Ω(g(n)) is a set of functions

Ω(g(n)) = {f(n) : ∃ c, n0 s.t. 0 ≤ cg(n) ≤ f(n) for n ≥ n0}

I Examples of functions in Ω(n2):

I n2

I n2 + n
I n2 − n
I 1000n2 + 1000n
I 1000n2 − 1000n
I n2.00001

I n2 lgn
I n3
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Θ-notation

I Definition. g(n) is an asymptotic tight
bound for f(n), denoted by

f(n) = Θ(g(n))

if there exist constants c1, c2 and n0
such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

for n ≥ n0.

I Example:
I 1

2
n2 − 2n = Θ(n2)

Since we can pick c1 = 1
4
c2 = 1

2
and

n0 = 8.

I If p(n) =
d∑

i=1

ain
i and ad > 0, then

p(n) = Θ(nd)

3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D �.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and � notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/

inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) �-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D �.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1
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The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
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if there exist constants c1, c2 and n0
such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

for n ≥ n0.

I Example:
I 1

2
n2 − 2n = Θ(n2)

Since we can pick c1 = 1
4
c2 = 1

2
and

n0 = 8.

I If p(n) =
d∑

i=1

ain
i and ad > 0, then

p(n) = Θ(nd)
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Figure 3.1 Graphic examples of the ‚, O , and � notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/

inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) �-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D �.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/

lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n � n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.
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More on Θ-notation

I Θ(g(n)) is a set of functions

Θ(g(n)) =

{f(n) : ∃ c1, c2, n0 s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for n ≥ n0}

I Examples of functions in Θ(n2):

I n2

I n2 + n
I n2 − n
I 1000n2 + 1000n
I 1000n2 − 1000n
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Theorem

Theorem. O and Ω iff Θ.
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Using limits for comparing orders of growth

In order to determine the relationship between f(n) and g(n), it is often
usefuly to examine

limn→∞
f(n)

g(n)
= L

The possible outcomes:

1. L = 0: f(n) = O(g(n))

2. L =∞: f(n) = Ω(g(n))

3. L 6= 0 is finite: f(n) = Θ(g(n))

4. There is no limit: this technique cannot be used to determine the
asymptotic relationship between f(n) and g(n).
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Review: L’Hopital’s rule

L’Hopital’s rule. Let f(x) and g(x) be differential functions with
derivatives f ′(x) and g′(x), respectively, such that

lim
x→∞

f(x) = lim
x→∞

g(x) =∞.

Then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.
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Examples for using limits and L’Hopital’s rule
for comparing orders of growth

1. f(n) = n2 and g(n) = n lg n

n2 = Ω(n lg n)

2. f(n) = n100 and g(n) = 2n

n100 = O(2n)

3. f(n) = 10n(n+ 1) and g(n) = n2

10n(n+ 1) = Θ(n2)
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Reading assiment

Read Section 3.2 of the textbook to review
Standard notations and common functions

1. Monotonicity

2. Floors and ceilings

3. Modular arithmetic

4. Polynomials

5. Exponentials

6. Logarithms

7. Factorials
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