II. Growth of Functions and Asymptotic Notations

Overview

Overview

- Study a way to describe the growth of functions in the limit asymptotic efficiency

Overview

- Study a way to describe the growth of functions in the limit asymptotic efficiency
- Focus on what's important (leading factor) by abstracting lower-order terms and constant factors

Overview

- Study a way to describe the growth of functions in the limit asymptotic efficiency
- Focus on what's important (leading factor) by abstracting lower-order terms and constant factors
- Indicate running times of algorithms

Overview

- Study a way to describe the growth of functions in the limit asymptotic efficiency
- Focus on what's important (leading factor) by abstracting lower-order terms and constant factors
- Indicate running times of algorithms
- A way to compare "sizes" of functions

$$
\begin{aligned}
& O \approx \leq \\
& \Omega \approx \geq \\
& \Theta \approx=
\end{aligned}
$$

In addition,

$$
\begin{aligned}
& o \approx< \\
& \omega \approx>
\end{aligned}
$$

O-notation

- Definition. $g(n)$ is an asymptotic upper bound for $f(n)$, denoted by

$$
f(n)=O(g(n))
$$

if there exist constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \quad \text { for } n \geq n_{0}
$$

O-notation

- Definition. $g(n)$ is an asymptotic upper bound for $f(n)$, denoted by

$$
f(n)=O(g(n))
$$

if there exist constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \quad \text { for } n \geq n_{0}
$$

- Example: Show that $2 n+10=O\left(n^{2}\right)$.

O-notation

- Definition. $g(n)$ is an asymptotic upper bound for $f(n)$, denoted by

$$
f(n)=O(g(n))
$$

if there exist constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \quad \text { for } n \geq n_{0}
$$

- Example: Show that $2 n+10=O\left(n^{2}\right)$. Proof: Since

$$
2 n+10 \leq n^{2} \quad \text { for } n \geq 5
$$

it is true for $c=1$ and $n_{0}=5$.

O-notation

- Definition. $g(n)$ is an asymptotic upper bound for $f(n)$, denoted by

$$
f(n)=O(g(n))
$$

if there exist constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n) \quad \text { for } n \geq n_{0}
$$

- Example: Show that $2 n+10=O\left(n^{2}\right)$.
 Proof: Since

$$
2 n+10 \leq n^{2} \quad \text { for } n \geq 5
$$

it is true for $c=1$ and $n_{0}=5$.
Alternative proof: Observe that
$2 n+10 \leq 2 n^{2}+10 n^{2}=12 n^{2} \quad$ for $n \geq 1$, it is true for $c=12$ and $n_{0}=1$.

More on O-notation

- $O(g(n))$ is a set of functions

$$
O(g(n))=\left\{f(n): \exists c, n_{0} \text { s.t. } 0 \leq f(n) \leq c g(n) \text { for } n \geq n_{0}\right\}
$$

More on O-notation

- $O(g(n))$ is a set of functions

$$
O(g(n))=\left\{f(n): \exists c, n_{0} \text { s.t. } 0 \leq f(n) \leq c g(n) \text { for } n \geq n_{0}\right\}
$$

- Examples of functions in $O\left(n^{2}\right)$:
- $n^{2}+n$
- $n^{2}+1000 n$
- $1000 n^{2}+1000 n$
- $n / 1000$
- $n^{2} / \lg n$

Ω-notation

- Definition. $g(n)$ is an asymptotic lower bound for $f(n)$, denoted by

$$
f(n)=\Omega(g(n))
$$

if there exist constants c and n_{0} such that

$$
0 \leq c g(n) \leq f(n) \quad \text { for } n \geq n_{0}
$$

Ω-notation

- Definition. $g(n)$ is an asymptotic lower bound for $f(n)$, denoted by

$$
f(n)=\Omega(g(n))
$$

if there exist constants c and n_{0} such that

$$
0 \leq c g(n) \leq f(n) \quad \text { for } n \geq n_{0}
$$

- Example

- $\sqrt{n}=\Omega(\lg n)$ by picking $c=1$ and $n_{0}=16$

More on Ω-notation

- $\Omega(g(n))$ is a set of functions

$$
\Omega(g(n))=\left\{f(n): \exists c, n_{0} \text { s.t. } 0 \leq c g(n) \leq f(n) \text { for } n \geq n_{0}\right\}
$$

More on Ω-notation

- $\Omega(g(n))$ is a set of functions

$$
\Omega(g(n))=\left\{f(n): \exists c, n_{0} \text { s.t. } 0 \leq c g(n) \leq f(n) \text { for } n \geq n_{0}\right\}
$$

- Examples of functions in $\Omega\left(n^{2}\right)$:
- n^{2}
- $n^{2}+n$
- $n^{2}-n$
- $1000 n^{2}+1000 n$
- $1000 n^{2}-1000 n$
- $n^{2.00001}$
- $n^{2} \lg n$
- n^{3}

Θ-notation

- Definition. $g(n)$ is an asymptotic tight bound for $f(n)$, denoted by

$$
f(n)=\Theta(g(n))
$$

if there exist constants c_{1}, c_{2} and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

for $n \geq n_{0}$.

Θ-notation

- Definition. $g(n)$ is an asymptotic tight bound for $f(n)$, denoted by

$$
f(n)=\Theta(g(n))
$$

if there exist constants c_{1}, c_{2} and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

for $n \geq n_{0}$.

- Example:
- $\frac{1}{2} n^{2}-2 n=\Theta\left(n^{2}\right)$

Θ-notation

- Definition. $g(n)$ is an asymptotic tight bound for $f(n)$, denoted by

$$
f(n)=\Theta(g(n))
$$

if there exist constants c_{1}, c_{2} and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

for $n \geq n_{0}$.

- Example:
- $\frac{1}{2} n^{2}-2 n=\Theta\left(n^{2}\right)$

Since we can pick $c_{1}=\frac{1}{4} c_{2}=\frac{1}{2}$ and $n_{0}=8$.

Θ-notation

- Definition. $g(n)$ is an asymptotic tight bound for $f(n)$, denoted by

$$
f(n)=\Theta(g(n))
$$

if there exist constants c_{1}, c_{2} and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

for $n \geq n_{0}$.

- Example:
- $\frac{1}{2} n^{2}-2 n=\Theta\left(n^{2}\right)$

Since we can pick $c_{1}=\frac{1}{4} c_{2}=\frac{1}{2}$ and $n_{0}=8$.

- If $p(n)=\sum_{i=1}^{d} a_{i} n^{i}$ and $a_{d}>0$, then

$$
p(n)=\Theta\left(n^{d}\right)
$$

More on Θ-notation

- $\Theta(g(n))$ is a set of functions

$$
\begin{aligned}
& \Theta(g(n))= \\
& \left\{f(n): \exists c_{1}, c_{2}, n_{0} \text { s.t. } 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for } n \geq n_{0}\right\}
\end{aligned}
$$

More on Θ-notation

- $\Theta(g(n))$ is a set of functions

$$
\begin{aligned}
& \Theta(g(n))= \\
& \left\{f(n): \exists c_{1}, c_{2}, n_{0} \text { s.t. } 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for } n \geq n_{0}\right\}
\end{aligned}
$$

- Examples of functions in $\Theta\left(n^{2}\right)$:
- n^{2}
- $n^{2}+n$
- $n^{2}-n$
- $1000 n^{2}+1000 n$
- $1000 n^{2}-1000 n$

Theorem

Theorem. O and Ω iff Θ.

Using limits for comparing orders of growth

Using limits for comparing orders of growth

In order to determine the relationship between $f(n)$ and $g(n)$, it is often usefuly to examine

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L
$$

Using limits for comparing orders of growth

In order to determine the relationship between $f(n)$ and $g(n)$, it is often usefuly to examine

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L
$$

The possible outcomes:

Using limits for comparing orders of growth

In order to determine the relationship between $f(n)$ and $g(n)$, it is often usefuly to examine

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L
$$

The possible outcomes:

1. $L=0: f(n)=O(g(n))$

Using limits for comparing orders of growth

In order to determine the relationship between $f(n)$ and $g(n)$, it is often usefuly to examine

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L
$$

The possible outcomes:

1. $L=0: f(n)=O(g(n))$
2. $L=\infty: f(n)=\Omega(g(n))$

Using limits for comparing orders of growth

In order to determine the relationship between $f(n)$ and $g(n)$, it is often usefuly to examine

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L
$$

The possible outcomes:

1. $L=0: f(n)=O(g(n))$
2. $L=\infty: f(n)=\Omega(g(n))$
3. $L \neq 0$ is finite: $f(n)=\Theta(g(n))$

Using limits for comparing orders of growth

In order to determine the relationship between $f(n)$ and $g(n)$, it is often usefuly to examine

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L
$$

The possible outcomes:

1. $L=0: f(n)=O(g(n))$
2. $L=\infty: f(n)=\Omega(g(n))$
3. $L \neq 0$ is finite: $f(n)=\Theta(g(n))$
4. There is no limit: this technique cannot be used to determine the asymptotic relationship between $f(n)$ and $g(n)$.

Review: L'Hopital's rule

L'Hopital's rule. Let $f(x)$ and $g(x)$ be differential functions with derivatives $f^{\prime}(x)$ and $g^{\prime}(x)$, respectively, such that

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty .
$$

Then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Examples for using limits and L'Hopital's rule for comparing orders of growth

Examples for using limits and L'Hopital's rule for comparing orders of growth

1. $f(n)=n^{2}$ and $g(n)=n \lg n$

Examples for using limits and L'Hopital's rule for comparing orders of growth

1. $f(n)=n^{2}$ and $g(n)=n \lg n$

$$
n^{2}=\Omega(n \lg n)
$$

Examples for using limits and L'Hopital's rule

 for comparing orders of growth1. $f(n)=n^{2}$ and $g(n)=n \lg n$

$$
n^{2}=\Omega(n \lg n)
$$

2. $f(n)=n^{100}$ and $g(n)=2^{n}$

Examples for using limits and L'Hopital's rule

 for comparing orders of growth1. $f(n)=n^{2}$ and $g(n)=n \lg n$

$$
n^{2}=\Omega(n \lg n)
$$

2. $f(n)=n^{100}$ and $g(n)=2^{n}$

$$
n^{100}=O\left(2^{n}\right)
$$

Examples for using limits and L'Hopital's rule

 for comparing orders of growth1. $f(n)=n^{2}$ and $g(n)=n \lg n$

$$
n^{2}=\Omega(n \lg n)
$$

2. $f(n)=n^{100}$ and $g(n)=2^{n}$

$$
n^{100}=O\left(2^{n}\right)
$$

3. $f(n)=10 n(n+1)$ and $g(n)=n^{2}$

Examples for using limits and L'Hopital's rule

 for comparing orders of growth1. $f(n)=n^{2}$ and $g(n)=n \lg n$

$$
n^{2}=\Omega(n \lg n)
$$

2. $f(n)=n^{100}$ and $g(n)=2^{n}$

$$
n^{100}=O\left(2^{n}\right)
$$

3. $f(n)=10 n(n+1)$ and $g(n)=n^{2}$

$$
10 n(n+1)=\Theta\left(n^{2}\right)
$$

Reading assiment

Read Section 3.2 of the textbook to review Standard notations and common functions

1. Monotonicity
2. Floors and ceilings
3. Modular arithmetic
4. Polynomials
5. Exponentials
6. Logarithms
7. Factorials
