Problem statement:

Given a set of n points on a line (1-dimensional, unsorted), find two points whose distance is shortest.

Problem statement:

Given a set of n points on a line (1-dimensional, unsorted), find two points whose distance is shortest.

Remark:

The problem is known as the closest pair problem in 1-dimension. Section 33.4 provides an algorithm for finding the closest pair of points in 2-dimension, i.e., on a plane, by extending the DC strategy we study here.

A brute-force solution

 \blacktriangleright Pick two of n points and compute the distance

A brute-force solution

 \blacktriangleright Pick two of n points and compute the distance

Cost:

$$T(n) = \left(\begin{array}{c} n \\ 2 \end{array} \right) = \frac{n!}{2!(n-2)!} = \Theta(n^2).$$

Algorithm 1

- 1. Sort the points, say Merge Sort
- 2. Perform a linear scan

Algorithm 1

- 1. Sort the points, say Merge Sort
- 2. Perform a linear scan

Remarks:

▶ Cost: $\Theta(n \lg n) + \Theta(n) = \Theta(n \lg n)$

Algorithm 1

- 1. Sort the points, say Merge Sort
- 2. Perform a linear scan

- ▶ Cost: $\Theta(n \lg n) + \Theta(n) = \Theta(n \lg n)$
- Unfortunately, the algorithm cannot be extended to the 2-dimension case.

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point $mid \in S$ into two sets S_1 and S_2 such that

p < q for all $p \in S_1$ and $q \in S_2$

For example, $mid \in S$ can be the median, found in O(n).

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point $mid \in S$ into two sets S_1 and S_2 such that

p < q for all $p \in S_1$ and $q \in S_2$

For example, $mid \in S$ can be the median, found in O(n).

- 2. Conquer:
 - (a) finds the closest pair *recursively* on S_1 and S_2 , gives us two closest pairs of points

 $\{p_1, p_2\} \in S_1 \text{ and } \{q_1, q_2\} \in S_2$

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point $mid \in S$ into two sets S_1 and S_2 such that

p < q for all $p \in S_1$ and $q \in S_2$

For example, $mid \in S$ can be the median, found in O(n).

- 2. Conquer:
 - (a) finds the closest pair *recursively* on S_1 and S_2 , gives us two closest pairs of points

 $\{p_1, p_2\} \in S_1 \text{ and } \{q_1, q_2\} \in S_2$

(b) finds the closest crossing pair $\{p_3, q_3\}$ with $p_3 \in S_1$ and $q_3 \in S_2$.

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point $mid \in S$ into two sets S_1 and S_2 such that

p < q for all $p \in S_1$ and $q \in S_2$

For example, $mid \in S$ can be the median, found in O(n).

- 2. Conquer:
 - (a) finds the closest pair *recursively* on S_1 and S_2 , gives us two closest pairs of points

 $\{p_1, p_2\} \in S_1 \text{ and } \{q_1, q_2\} \in S_2$

(b) finds the closest crossing pair $\{p_3, q_3\}$ with $p_3 \in S_1$ and $q_3 \in S_2$.

3. Combine: the closest pair in the set S is

$$\operatorname{argmin}\{|p_1 - p_2|, |q_1 - q_2|, |p_3 - q_3|\}.$$

Remarks:

1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 - p_2|, |q_1 - q_2|\}$ of *mid* if $\{p_3, q_3\}$ is to have a distance smaller than d.

- 1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 p_2|, |q_1 q_2|\}$ of *mid* if $\{p_3, q_3\}$ is to have a distance smaller than d.
- 2. How many points of S_1 can lie in (mid d, mid]?

- 1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 p_2|, |q_1 q_2|\}$ of *mid* if $\{p_3, q_3\}$ is to have a distance smaller than d.
- How many points of S₁ can lie in (*mid d, mid*]? answer: at most one

- 1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 p_2|, |q_1 q_2|\}$ of *mid* if $\{p_3, q_3\}$ is to have a distance smaller than d.
- 2. How many points of S₁ can lie in (*mid d*, *mid*]? *answer: at most one*
- 3. How many points of S_2 can lie in [mid, mid + d)?

- 1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 p_2|, |q_1 q_2|\}$ of *mid* if $\{p_3, q_3\}$ is to have a distance smaller than d.
- 2. How many points of S₁ can lie in (*mid d*, *mid*]? *answer: at most one*
- 3. How many points of S_2 can lie in [mid, mid + d)? answer: at most one

- 1. Both p_3 and q_3 must be within distance $d = \min\{|p_1 p_2|, |q_1 q_2|\}$ of *mid* if $\{p_3, q_3\}$ is to have a distance smaller than d.
- 2. How many points of S₁ can lie in (*mid d*, *mid*]? *answer: at most one*
- 3. How many points of S_2 can lie in [mid, mid + d)? answer: at most one
- 4. Therefore, the number of pairwise comparisons that must be made between points in different subsets is thus at most one.

```
ClosestPair(S)
if |S| = 2, then
   d = |S[2] - S[1]|
else
   if |S| = 1
     d = infty
   else
      mid = median(S)
      construct S1 and S2 from mid
      d1 = ClosestPair(S1)
      d2 = ClosestPair(S2)
      p3 = max(S1)
      q3 = min(S2)
      d = min(d1, d2, q3-p3)
   end if
end if
return d
```

Remark:

1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).

- 1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).
- 2. The points in the intervals (mid d, mid] and [mid, mid + d) can be found in linear time O(n), called *linear scan*.

Remark:

- 1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).
- 2. The points in the intervals (mid d, mid] and [mid, mid + d) can be found in linear time O(n), called *linear scan*.
- 3. Total cost:

$$T(n) = 2 \cdot T(\frac{n}{2}) + \Theta(n) = \Theta(n \lg n).$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

7/8

Remark:

- 1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).
- 2. The points in the intervals (mid d, mid] and [mid, mid + d) can be found in linear time O(n), called *linear scan*.
- 3. Total cost:

$$T(n) = 2 \cdot T(\frac{n}{2}) + \Theta(n) = \Theta(n \lg n).$$

4. In general, given n points in d-dimension, the closest pair of points can be found in $O(n(\lg n)^{d-1}).$

 Selection problem: Input:

A set A of n (distinct) numbers and an integer i, with $1 \le i \le n$.

Selection problem: Input:

A set A of n (distinct) numbers and an integer i, with $1 \le i \le n$.

Output:

The element $x \in A$ that is larger than exactly i - 1 other elements of A. In other words, x is the *i*th smallest element of A.

Selection problem: Input:

A set A of n (distinct) numbers and an integer i, with $1 \le i \le n$.

Output:

The element $x \in A$ that is larger than exactly i - 1 other elements of A. In other words, x is the *i*th smallest element of A.

• A median is the "halfway point" of the set A, i.e, $i = \lfloor (n+1)/2 \rfloor$.

 Selection problem: Input:

A set A of n (distinct) numbers and an integer i, with $1 \le i \le n$.

Output:

The element $x \in A$ that is larger than exactly i - 1 other elements of A. In other words, x is the *i*th smallest element of A.

- A median is the "halfway point" of the set A, i.e, $i = \lfloor (n+1)/2 \rfloor$.
- A simple sorting algorithm will take $O(n \lg n)$ time.

 Selection problem: Input:

A set A of n (distinct) numbers and an integer i, with $1 \le i \le n$.

Output:

The element $x \in A$ that is larger than exactly i - 1 other elements of A. In other words, x is the *i*th smallest element of A.

- ▶ A median is the "halfway point" of the set A, i.e, $i = \lceil (n+1)/2 \rceil$.
- A simple sorting algorithm will take $O(n \lg n)$ time.
- Yet, a DC strategy leads to running time of O(n) see Chapter 9.