The closest pair point

Problem statement:
Given a set of n points on a line (1-dimensional, unsorted), find two points whose distance is shortest.

The closest pair point

Problem statement:
Given a set of n points on a line (1-dimensional, unsorted), find two points whose distance is shortest.

Remark:

- The problem is known as the closest pair problem in 1-dimension. Section 33.4 provides an algorithm for finding the closest pair of points in 2-dimension, i.e., on a plane, by extending the DC strategy we study here.

The closest pair point

A brute-force solution

- Pick two of n points and compute the distance

The closest pair point

A brute-force solution

- Pick two of n points and compute the distance

Cost:

$$
T(n)=\binom{n}{2}=\frac{n!}{2!(n-2)!}=\Theta\left(n^{2}\right)
$$

The closest pair point

Algorithm 1

1. Sort the points, say Merge Sort
2. Perform a linear scan

The closest pair point

Algorithm 1

1. Sort the points, say Merge Sort
2. Perform a linear scan

Remarks:

- Cost: $\Theta(n \lg n)+\Theta(n)=\Theta(n \lg n)$

The closest pair point

Algorithm 1

1. Sort the points, say Merge Sort
2. Perform a linear scan

Remarks:

- Cost: $\Theta(n \lg n)+\Theta(n)=\Theta(n \lg n)$
- Unfortunately, the algorithm cannot be extended to the 2-dimension case.

The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point mid $\in S$ into two sets S_{1} and S_{2} such that

$$
p<q \quad \text { for all } p \in S_{1} \text { and } q \in S_{2}
$$

For example, mid $\in S$ can be the median, found in $O(n)$.

The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point mid $\in S$ into two sets S_{1} and S_{2} such that

$$
p<q \quad \text { for all } p \in S_{1} \text { and } q \in S_{2}
$$

For example, mid $\in S$ can be the median, found in $O(n)$.
2. Conquer:
(a) finds the closest pair recursively on S_{1} and S_{2}, gives us two closest pairs of points

$$
\left\{p_{1}, p_{2}\right\} \in S_{1} \text { and }\left\{q_{1}, q_{2}\right\} \in S_{2}
$$

The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point mid $\in S$ into two sets S_{1} and S_{2} such that

$$
p<q \quad \text { for all } p \in S_{1} \text { and } q \in S_{2}
$$

For example, mid $\in S$ can be the median, found in $O(n)$.
2. Conquer:
(a) finds the closest pair recursively on S_{1} and S_{2}, gives us two closest pairs of points

$$
\left\{p_{1}, p_{2}\right\} \in S_{1} \text { and }\left\{q_{1}, q_{2}\right\} \in S_{2}
$$

(b) finds the closest crossing pair $\left\{p_{3}, q_{3}\right\}$ with $p_{3} \in S_{1}$ and $q_{3} \in S_{2}$.

The closest pair point

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S of n points by some point mid $\in S$ into two sets S_{1} and S_{2} such that

$$
p<q \quad \text { for all } p \in S_{1} \text { and } q \in S_{2}
$$

For example, mid $\in S$ can be the median, found in $O(n)$.
2. Conquer:
(a) finds the closest pair recursively on S_{1} and S_{2}, gives us two closest pairs of points

$$
\left\{p_{1}, p_{2}\right\} \in S_{1} \text { and }\left\{q_{1}, q_{2}\right\} \in S_{2}
$$

(b) finds the closest crossing pair $\left\{p_{3}, q_{3}\right\}$ with $p_{3} \in S_{1}$ and $q_{3} \in S_{2}$.
3. Combine: the closest pair in the set S is

$$
\operatorname{argmin}\left\{\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|,\left|p_{3}-q_{3}\right|\right\} .
$$

The closest pair point

Remarks:

1. Both p_{3} and q_{3} must be within distance $d=\min \left\{\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|\right\}$ of mid if $\left\{p_{3}, q_{3}\right\}$ is to have a distance smaller than d.

The closest pair point

Remarks:

1. Both p_{3} and q_{3} must be within distance $d=\min \left\{\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|\right\}$ of mid if $\left\{p_{3}, q_{3}\right\}$ is to have a distance smaller than d.
2. How many points of S_{1} can lie in (mid $-d$, mid]?

The closest pair point

Remarks:

1. Both p_{3} and q_{3} must be within distance $d=\min \left\{\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|\right\}$ of mid if $\left\{p_{3}, q_{3}\right\}$ is to have a distance smaller than d.
2. How many points of S_{1} can lie in (mid - d, mid]? answer: at most one

The closest pair point

Remarks:

1. Both p_{3} and q_{3} must be within distance $d=\min \left\{\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|\right\}$ of mid if $\left\{p_{3}, q_{3}\right\}$ is to have a distance smaller than d.
2. How many points of S_{1} can lie in (mid - d, mid]? answer: at most one
3. How many points of S_{2} can lie in $[$ mid, mid $+d)$?

The closest pair point

Remarks:

1. Both p_{3} and q_{3} must be within distance $d=\min \left\{\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|\right\}$ of mid if $\left\{p_{3}, q_{3}\right\}$ is to have a distance smaller than d.
2. How many points of S_{1} can lie in (mid - d, mid]? answer: at most one
3. How many points of S_{2} can lie in $[$ mid, mid $+d)$? answer: at most one

The closest pair point

Remarks:

1. Both p_{3} and q_{3} must be within distance $d=\min \left\{\left|p_{1}-p_{2}\right|,\left|q_{1}-q_{2}\right|\right\}$ of mid if $\left\{p_{3}, q_{3}\right\}$ is to have a distance smaller than d.
2. How many points of S_{1} can lie in (mid - d, mid]? answer: at most one
3. How many points of S_{2} can lie in $[$ mid, mid $+d)$? answer: at most one
4. Therefore, the number of pairwise comparisons that must be made between points in different subsets is thus at most one.

The closest pair point

```
ClosestPair(S)
if |S| = 2, then
    d = |S[2] - S[1]|
else
    if |S| = 1
        d = infty
    else
        mid = median(S)
        construct S1 and S2 from mid
        d1 = ClosestPair(S1)
        d2 = ClosestPair(S2)
        p3 = max(S1)
        q3 = min(S2)
        d = min(d1, d2, q3-p3)
    end if
end if
return d
```


The closest pair point

Remark:

1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).

The closest pair point

Remark:

1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).
2. The points in the intervals (mid $-d$, mid] and $[$ mid, mid $+d$) can be found in linear time $O(n)$, called linear scan.

The closest pair point

Remark:

1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).
2. The points in the intervals (mid $-d$, mid] and $[$ mid, mid $+d$) can be found in linear time $O(n)$, called linear scan.
3. Total cost:

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+\Theta(n)=\Theta(n \lg n) .
$$

The closest pair point

Remark:

1. A median of a set A is the "halfway point" of the set A can be found in linear time $\Theta(n)$ on average (see Chapter 9).
2. The points in the intervals (mid $-d$, mid] and $[$ mid, mid $+d$) can be found in linear time $O(n)$, called linear scan.
3. Total cost:

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+\Theta(n)=\Theta(n \lg n) .
$$

4. In general, given n points in d-dimension, the closest pair of points can be found in $O\left(n(\lg n)^{d-1}\right)$.

Extra: Medians and order statistics

- Selection problem: Input:

$$
\begin{aligned}
& \text { A set } A \text { of } n \text { (distinct) numbers and an integer } i \text {, with } \\
& 1 \leq i \leq n .
\end{aligned}
$$

Extra: Medians and order statistics

- Selection problem:

Input:
A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

Output:
The element $x \in A$ that is larger than exactly $i-1$ other elements of A. In other words, x is the ith smallest element of A.

Extra: Medians and order statistics

- Selection problem:

Input:
A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

Output:
The element $x \in A$ that is larger than exactly $i-1$ other elements of A. In other words, x is the ith smallest element of A.

- A median is the "halfway point" of the set A, i.e, $i=\lceil(n+1) / 2\rceil$.

Extra: Medians and order statistics

- Selection problem:

Input:
A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.
Output:
The element $x \in A$ that is larger than exactly $i-1$ other elements of A. In other words, x is the ith smallest element of A.

- A median is the "halfway point" of the set A, i.e, $i=\lceil(n+1) / 2\rceil$.
- A simple sorting algorithm will take $O(n \lg n)$ time.

Extra: Medians and order statistics

- Selection problem:

Input:
A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.
Output:
The element $x \in A$ that is larger than exactly $i-1$ other elements of A. In other words, x is the ith smallest element of A.

- A median is the "halfway point" of the set A, i.e, $i=\lceil(n+1) / 2\rceil$.
- A simple sorting algorithm will take $O(n \lg n)$ time.
- Yet, a DC strategy leads to running time of $O(n)$ - see Chapter 9 .

