
Depth-First Search (DFS)

I Another archetype for many important graph algorithms

I Methodically explore every vertex and every edge

I Input: G = (V,E)

Output: (1) two timestamps for every v ∈ V
d[v] = when v is first discovered.
f [v] = when v is finished.

(2) classification of edges

1 / 8

Depth-First Search (DFS)

I Another archetype for many important graph algorithms

I Methodically explore every vertex and every edge

I Input: G = (V,E)

Output: (1) two timestamps for every v ∈ V
d[v] = when v is first discovered.
f [v] = when v is finished.

(2) classification of edges

1 / 8

Depth-First Search (DFS)

I Another archetype for many important graph algorithms

I Methodically explore every vertex and every edge

I Input: G = (V,E)

Output: (1) two timestamps for every v ∈ V
d[v] = when v is first discovered.
f [v] = when v is finished.

(2) classification of edges

1 / 8

Depth-First Search (DFS)

I Another archetype for many important graph algorithms

I Methodically explore every vertex and every edge

I Input: G = (V,E)

Output: (1) two timestamps for every v ∈ V
d[v] = when v is first discovered.
f [v] = when v is finished.

(2) classification of edges

1 / 8

DFS

I Basic idea:

I go as deep as possible, then “back up”,

I edges are explored out of the most recently discovered vertex v that
still have unexplored edges leaving,

I when all of v’s edges have been explored, the search “backtracks” to
explore edges leaving the vertex from which v was discoverd.

I Three-color code for search status of vertices

I White = a vertex is undiscovered
I Gray = a vertex is discovered, but its processing is incomplete
I Black = a vertex is discovered, and its processing is complete

2 / 8

DFS

I Basic idea:

I go as deep as possible, then “back up”,

I edges are explored out of the most recently discovered vertex v that
still have unexplored edges leaving,

I when all of v’s edges have been explored, the search “backtracks” to
explore edges leaving the vertex from which v was discoverd.

I Three-color code for search status of vertices

I White = a vertex is undiscovered
I Gray = a vertex is discovered, but its processing is incomplete
I Black = a vertex is discovered, and its processing is complete

2 / 8

DFS

I Basic idea:

I go as deep as possible, then “back up”,

I edges are explored out of the most recently discovered vertex v that
still have unexplored edges leaving,

I when all of v’s edges have been explored, the search “backtracks” to
explore edges leaving the vertex from which v was discoverd.

I Three-color code for search status of vertices

I White = a vertex is undiscovered
I Gray = a vertex is discovered, but its processing is incomplete
I Black = a vertex is discovered, and its processing is complete

2 / 8

DFS

I Basic idea:

I go as deep as possible, then “back up”,

I edges are explored out of the most recently discovered vertex v that
still have unexplored edges leaving,

I when all of v’s edges have been explored, the search “backtracks” to
explore edges leaving the vertex from which v was discoverd.

I Three-color code for search status of vertices

I White = a vertex is undiscovered
I Gray = a vertex is discovered, but its processing is incomplete
I Black = a vertex is discovered, and its processing is complete

2 / 8

DFS

I Basic idea:

I go as deep as possible, then “back up”,

I edges are explored out of the most recently discovered vertex v that
still have unexplored edges leaving,

I when all of v’s edges have been explored, the search “backtracks” to
explore edges leaving the vertex from which v was discoverd.

I Three-color code for search status of vertices

I White = a vertex is undiscovered
I Gray = a vertex is discovered, but its processing is incomplete
I Black = a vertex is discovered, and its processing is complete

2 / 8

DFS

I Basic idea:

I go as deep as possible, then “back up”,

I edges are explored out of the most recently discovered vertex v that
still have unexplored edges leaving,

I when all of v’s edges have been explored, the search “backtracks” to
explore edges leaving the vertex from which v was discoverd.

I Three-color code for search status of vertices

I White = a vertex is undiscovered
I Gray = a vertex is discovered, but its processing is incomplete
I Black = a vertex is discovered, and its processing is complete

2 / 8

DFS

DFS(G) // main routine :

for each vertex u in V :

color[u] = ‘‘white’’ :

endfor :

time = 0 :

for each vertex u in V :

if color[u] = ‘‘white’’ :

DFS-Visit(u) :

endif :

endfor :

// end of main routine :

DFS-Visit(u) // subroutine

color[u] = ‘‘gray’’

time = time + 1

d[u] = time

for each v in Adj[u]

if color[v] = ‘‘white’’

DFS-Visit(v)

endif

end for

color[u] = ‘‘black’’

time = time + 1

f[u] = time

// end of subroutine

3 / 8

DFS

DFS(G) // main routine : DFS-Visit(u) // subroutine

for each vertex u in V : color[u] = ‘‘gray’’

color[u] = ‘‘white’’ : time = time + 1

endfor : d[u] = time

time = 0 : for each v in Adj[u]

for each vertex u in V : if color[v] = ‘‘white’’

if color[u] = ‘‘white’’ : DFS-Visit(v)

DFS-Visit(u) : end if

endif : end for

endfor : color[u] = ‘‘black’’

// end of main routine : time = time + 1

: f[u] = time

: // end of subroutine

4 / 8

DFS

Remarks:

I Vertices, from which exploration is incomplete, are proceessed in a
LIFO stack.

I Running time: Θ(|V |+ |E|)

not big-O since guaranteed to examine every vertex and edge.

I For more properties of DFS, see pp.606-608 of [CLRS,3rd ed.]

5 / 8

DFS

Remarks:

I Vertices, from which exploration is incomplete, are proceessed in a
LIFO stack.

I Running time: Θ(|V |+ |E|)

not big-O since guaranteed to examine every vertex and edge.

I For more properties of DFS, see pp.606-608 of [CLRS,3rd ed.]

5 / 8

DFS

Remarks:

I Vertices, from which exploration is incomplete, are proceessed in a
LIFO stack.

I Running time: Θ(|V |+ |E|)

not big-O since guaranteed to examine every vertex and edge.

I For more properties of DFS, see pp.606-608 of [CLRS,3rd ed.]

5 / 8

DFS

Remarks:

I Vertices, from which exploration is incomplete, are proceessed in a
LIFO stack.

I Running time: Θ(|V |+ |E|)

not big-O since guaranteed to examine every vertex and edge.

I For more properties of DFS, see pp.606-608 of [CLRS,3rd ed.]

5 / 8

DFS

Classification of edges:

I T = Tree edge = encounter new vertex (gray to white)

I B = Back edge = from descendant to ancestor (gray to gray)

I F = Forward edge = from ancestor to descendant (gray to black)

I C = Cross edge = any other edges (between trees and subtrees)
(gray to black)

Note: In an undirected graph, there may be some ambiguity since edge
(u,v) and (v,u) are the same edge. Classify by the first type that matches.

6 / 8

DFS

DFS(G) // main routine : DFS-Visit(u) // subroutine

for each vertex u in V : color[u] = ‘‘gray’’

color[u] = ‘‘white’’ : time = time + 1

endfor : d[u] = time

time = 0 : for each v in Adj[u]

for each vertex u in V : if color[v] = ‘‘white’’

if color[u] = ‘‘white’’ : DFS-Visit(v)

DFS-Visit(u) : end if

endif : end for

endfor : color[u] = ‘‘black’’

// end of main routine : time = time + 1

: f[u] = time

: // end of subroutine

Classification of edges

T = Tree edge = encounter new vertex (gray to white)

B = Back edge = from descendant to ancestor (gray to gray)

F = Forward edge = from ancestor to descendant (gray to
black)

C = Cross edge = any other edges (between trees and
subtrees) (gray to black)

7 / 8

DFS vs. BFS

1. DFS: vertices from which the exploring is incomplete are processed in
a LIFO order (stack)

BFS: vertices to be explored are organized in a FIFO order (queue)

2. DFS contains two processing opportunities for each vertex v, when it
is “discovered” and when it is “finished”

BFS contains only one processing opportunity for each vertex v, and
then it is dequeued

8 / 8

DFS vs. BFS

1. DFS: vertices from which the exploring is incomplete are processed in
a LIFO order (stack)

BFS: vertices to be explored are organized in a FIFO order (queue)

2. DFS contains two processing opportunities for each vertex v, when it
is “discovered” and when it is “finished”

BFS contains only one processing opportunity for each vertex v, and
then it is dequeued

8 / 8

DFS vs. BFS

1. DFS: vertices from which the exploring is incomplete are processed in
a LIFO order (stack)

BFS: vertices to be explored are organized in a FIFO order (queue)

2. DFS contains two processing opportunities for each vertex v, when it
is “discovered” and when it is “finished”

BFS contains only one processing opportunity for each vertex v, and
then it is dequeued

8 / 8

DFS vs. BFS

1. DFS: vertices from which the exploring is incomplete are processed in
a LIFO order (stack)

BFS: vertices to be explored are organized in a FIFO order (queue)

2. DFS contains two processing opportunities for each vertex v, when it
is “discovered” and when it is “finished”

BFS contains only one processing opportunity for each vertex v, and
then it is dequeued

8 / 8

