1. For a undirected graph,

(a) a DFS produces only $\ensuremath{\text{Tree}}$ and $\ensuremath{\text{Back}}$ edges

- 1. For a undirected graph,
 - (a) a DFS produces only Tree and Back edges
 - (b) acyclic (tree) iff a DFS yeilds no Back edges

- For a undirected graph,
 (a) a DFS produces only Tree and Back edges
 (b) acyclic (tree) iff a DFS yeilds no Back edges
- A directed graph is acyclic iff a DFS yields no back edges, i.e.,
 DAG (directed acyclic graph) ⇔ no back edges

- For a undirected graph,
 (a) a DFS produces only Tree and Back edges
 (b) acyclic (tree) iff a DFS yeilds no Back edges
- A directed graph is acyclic iff a DFS yields no back edges, i.e.,
 DAG (directed acyclic graph) ⇔ no back edges
- 3. Topological sort of a DAG next

For a undirected graph,
 (a) a DFS produces only Tree and Back edges
 (b) acyclic (tree) iff a DFS yeilds no Back edges

- A directed graph is acyclic iff a DFS yields no back edges, i.e.,
 DAG (directed acyclic graph) ⇔ no back edges
- 3. Topological sort of a DAG next
- 4. Connected components of a undirected graph (see Homework 6)

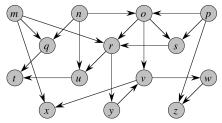
For a undirected graph,
 (a) a DFS produces only Tree and Back edges
 (b) acyclic (tree) iff a DFS yeilds no Back edges

- A directed graph is acyclic iff a DFS yields no back edges, i.e.,
 DAG (directed acyclic graph) ⇔ no back edges
- 3. Topological sort of a DAG next
- 4. Connected components of a undirected graph (see Homework 6)
- Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.])

A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all its vertices such that if (u, v) ∈ E, then u appears before v.

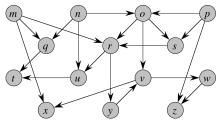
A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all its vertices such that if (u, v) ∈ E, then u appears before v.

Example: given a DAG

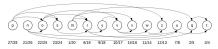


A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all its vertices such that if (u, v) ∈ E, then u appears before v.

Example: given a DAG

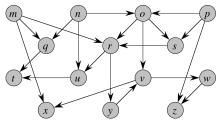


Linear ordering:

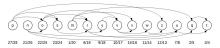


A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all its vertices such that if (u, v) ∈ E, then u appears before v.

Example: given a DAG



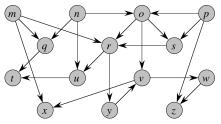
Linear ordering:



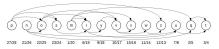
► A TS is not possible if G has a cycle.

A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all its vertices such that if (u, v) ∈ E, then u appears before v.

Example: given a DAG

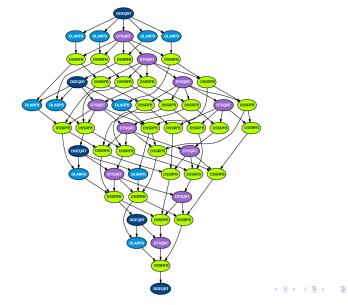


Linear ordering:



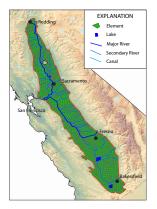
- A TS is not possible if G has a cycle.
- The ordering is not necessarily unique.

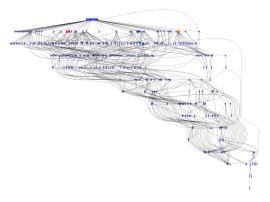
Applications: call-graph



= ♥)Q(♥ 3/7

Applications: call-graph

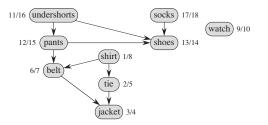




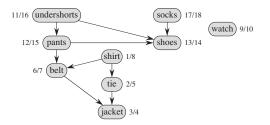
- ► TS algorithm
 - 1. run DFS(G) to compute finishing times f[v] for all $v \in V$
 - 2. output vertices in order of decreasing times

- ► TS algorithm
 - 1. run DFS(G) to compute finishing times f[v] for all $v \in V$
 - 2. output vertices in order of decreasing times
- Running time: $\Theta(|V| + |E|)$

Example: "Getting-dressed-graph" and DFS



Example: "Getting-dressed-graph" and DFS



Topologically sorted

Theorem (correctness of the algorithm):

TS(G) produces a toplogical sort of a DAG G.

Theorem (correctness of the algorithm):

 $\mathsf{TS}(\mathsf{G})$ produces a toplogical sort of a DAG G.

Proof: Just need to show that if $(u, v) \in E$, then f[v] < f[u]. When we explore edge (u, v), u is gray, what's the color of v?

► Is v gray too?

no, because then v would be ancestor of $u,\, {\rm edge}\,\,(u,v)$ is a back edge, a contradiction of a DAG.

► Is v white?

yes, then v is descendant of u, by DFS, d[u] < d[v] < f[v] < f[u]

► Is v black?

yes, then v is already finished. Since we're exploring (u,v), we have not yet finished u, therefore f[v] < f[u]