Applications of DFS

1. For a undirected graph,
(a) a DFS produces only Tree and Back edges

Applications of DFS

1. For a undirected graph,
(a) a DFS produces only Tree and Back edges
(b) acyclic (tree) iff a DFS yeilds no Back edges

Applications of DFS

1. For a undirected graph,
(a) a DFS produces only Tree and Back edges
(b) acyclic (tree) iff a DFS yeilds no Back edges
2. A directed graph is acyclic iff a DFS yields no back edges, i.e.,

DAG (directed acyclic graph) < no back edges

Applications of DFS

1. For a undirected graph,
(a) a DFS produces only Tree and Back edges
(b) acyclic (tree) iff a DFS yeilds no Back edges

2. A directed graph is acyclic iff a DFS yields no back edges, i.e.,
DAG (directed acyclic graph) < no back edges
3. Topological sort of a DAG — next

Applications of DFS

1. For a undirected graph,
(a) a DFS produces only Tree and Back edges
(b) acyclic (tree) iff a DFS yeilds no Back edges

2. A directed graph is acyclic iff a DFS yields no back edges, i.e.,
DAG (directed acyclic graph) < no back edges
3. Topological sort of a DAG — next

4. Connected components of a undirected graph (see Homework 6)

Applications of DFS

1.

For a undirected graph,
(a) a DFS produces only Tree and Back edges
(b) acyclic (tree) iff a DFS yeilds no Back edges

A directed graph is acyclic iff a DFS yields no back edges, i.e.,
DAG (directed acyclic graph) < no back edges
Topological sort of a DAG — next

Connected components of a undirected graph (see Homework 6)

. Strongly connected components of a drected graph (see Sec.22.5 of

[CLRS,3rd ed.])

Topological sort

> A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all
its vertices such that if (u,v) € E, then u appears before v.

Topological sort

> A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all
its vertices such that if (u,v) € E, then u appears before v.

Example: given a DAG

~

Topological sort

> A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all
its vertices such that if (u,v) € E, then u appears before v.

Example: given a DAG

Linear ordering:

680600000000

Topological sort

> A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all
its vertices such that if (u,v) € E, then u appears before v.

Example: given a DAG

Linear ordering:

» A TS is not possible if G has a cycle.

~

Topological sort

> A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all
its vertices such that if (u,v) € E, then u appears before v.

Example: given a DAG

Linear ordering:

» A TS is not possible if G has a cycle.

» The ordering is not necessarily unique.

~

Topological sort

Applications: call-graph

Topological sort

Applications: call-graph

EXPLANATION
@ Element

B lake
~ Major River
. Secondary River
T~ canal

u]
o)
I

i
it
)
»
i)

4/7

Topological sort

» TS algorithm

1. run DFS(G) to compute finishing times f[v] for all v € V/
2. output vertices in order of decreasing times

~

Topological sort

» TS algorithm

1. run DFS(G) to compute finishing times f[v] for all v € V/
2. output vertices in order of decreasing times

» Running time: O(|V] + |E|)

Topological sort

Example: “Getting-dressed-graph” and DFS

17/18

12/15 13/14

~

Topological sort

Example: “Getting-dressed-graph” and DFS

17/18

Topologically sorted

(o) e o))) Gy o)) >

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

~

Topological sort

Theorem (correctness of the algorithm):
TS(G) produces a toplogical sort of a DAG G.

Topological sort

Theorem (correctness of the algorithm):
TS(G) produces a toplogical sort of a DAG G.

Proof: Just need to show that if (u,v) € E, then fv] < flu] .
When we explore edge (u,v), u is gray, what's the color of v?
> Is v gray too?
no, because then v would be ancestor of u, edge (u,v) is a back edge,
a contradiction of a DAG.
» Is v white?
yes, then v is descendant of u, by DFS, d[u] < d[v] < f[v] < f[u]
> Is v black?

yes, then v is already finished. Since we're exploring (u,v), we have
not yet finished u, therefore flv] < flu]

