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Applications of DFS

1.

For a undirected graph,
(a) a DFS produces only Tree and Back edges
(b) acyclic (tree) iff a DFS yeilds no Back edges

A directed graph is acyclic iff a DFS yields no back edges, i.e.,
DAG (directed acyclic graph) < no back edges
Topological sort of a DAG — next

Connected components of a undirected graph (see Homework 6)

. Strongly connected components of a drected graph (see Sec.22.5 of

[CLRS,3rd ed.])
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Topological sort

> A topological sort (TS) of a DAG G = (V, E) is a linear ordering of all
its vertices such that if (u,v) € E, then u appears before v.

Example: given a DAG

Linear ordering:

» A TS is not possible if G has a cycle.

» The ordering is not necessarily unique.
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Topological sort

» TS algorithm

1. run DFS(G) to compute finishing times f[v] for all v € V/
2. output vertices in order of decreasing times
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Topological sort

» TS algorithm

1. run DFS(G) to compute finishing times f[v] for all v € V/
2. output vertices in order of decreasing times

» Running time: O(|V] + |E|)
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Example: “Getting-dressed-graph” and DFS
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Example: “Getting-dressed-graph” and DFS
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Topological sort

Theorem (correctness of the algorithm):
TS(G) produces a toplogical sort of a DAG G.

Proof: Just need to show that if (u,v) € E, then fv] < flu] .
When we explore edge (u,v), u is gray, what's the color of v?
> Is v gray too?
no, because then v would be ancestor of u, edge (u,v) is a back edge,
a contradiction of a DAG.
» Is v white?
yes, then v is descendant of u, by DFS, d[u] < d[v] < f[v] < f[u]
> Is v black?

yes, then v is already finished. Since we're exploring (u,v), we have
not yet finished u, therefore flv] < flu]



