
Applications of DFS

1. For a undirected graph,
(a) a DFS produces only Tree and Back edges

(b) acyclic (tree) iff a DFS yeilds no Back edges

2. A directed graph is acyclic iff a DFS yields no back edges, i.e.,

DAG (directed acyclic graph) ⇔ no back edges

3. Topological sort of a DAG – next

4. Connected components of a undirected graph (see Homework 6)

5. Strongly connected components of a drected graph (see Sec.22.5 of
[CLRS,3rd ed.])
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Topological sort

I A topological sort (TS) of a DAG G = (V,E) is a linear ordering of all
its vertices such that if (u, v) ∈ E, then u appears before v.

Example: given a DAG

Linear ordering:

I A TS is not possible if G has a cycle.

I The ordering is not necessarily unique.
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Topological sort

Applications: call-graph
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Topological sort

I TS algorithm

1. run DFS(G) to compute finishing times f [v] for all v ∈ V
2. output vertices in order of decreasing times

I Running time: Θ(|V |+ |E|)
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Topological sort

Example: “Getting-dressed-graph” and DFS22.4 Topological sort 613
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Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; �/ means that garment u must be put on before garment �. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; �/ in the dag of Figure 22.7(a) indicates that garment u

must be donned before garment �. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times �: f for each vertex �

2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Topologically sorted
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Topological sort

Theorem (correctness of the algorithm):
TS(G) produces a toplogical sort of a DAG G.

Proof: Just need to show that if (u, v) ∈ E, then f [v] < f [u] .
When we explore edge (u, v), u is gray, what’s the color of v?

I Is v gray too?
no, because then v would be ancestor of u, edge (u, v) is a back edge,
a contradiction of a DAG.

I Is v white?
yes, then v is descendant of u, by DFS, d[u] < d[v] < f [v] < f [u]

I Is v black?
yes, then v is already finished. Since we’re exploring (u, v), we have
not yet finished u, therefore f [v] < f [u]
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