VIl. Graph Algorithms

Notion of graphs

Basic terminology
» Graph G = (V, E):
» V = {v;} = set of vertices
» E = set of edges = a subset of V x V = {(v;,v;)}

Notion of graphs

Basic terminology
» Graph G = (V, E):
» V = {v;} = set of vertices
» E = set of edges = a subset of V x V = {(v;,v;)}

> |El=0(V]?)
» dense graph: |E| ~ |V|?
> sparse graph: |E| ~ |V|
> If G is connected, then |E| > |V| — 1.

Notion of graphs

Basic terminology
» Graph G = (V, E):
» V = {v;} = set of vertices
» E = set of edges = a subset of V x V = {(v;,v;)}

> |El=0(V]?)
» dense graph: |E| ~ |V|?
> sparse graph: |E| ~ |V|
> If G is connected, then |E| > |V| — 1.

» Some variants

> undirected: edge (u,v) = (v, u)

Notion of graphs

Basic terminology
» Graph G = (V, E):
» V = {v;} = set of vertices
» E = set of edges = a subset of V x V = {(v;,v;)}

> |El=0(V]?)
» dense graph: |E| ~ |V|?
> sparse graph: |E| ~ |V|
> If G is connected, then |E| > |V| — 1.

» Some variants

> undirected: edge (u,v) = (v, u)
> directed: (u,v) is edge from u to v.

Notion of graphs

Basic terminology
» Graph G = (V, E):
» V = {v;} = set of vertices
» E = set of edges = a subset of V x V = {(v;,v;)}

> |El=0(V]?)
» dense graph: |E| ~ |V|?
> sparse graph: |E| ~ |V|
> If G is connected, then |E| > |V| — 1.

» Some variants

> undirected: edge (u,v) = (v, u)
> directed: (u,v) is edge from u to v.
> weighted: weight on either edge or vertex

Notion of graphs

Basic terminology
» Graph G = (V, E):
» V = {v;} = set of vertices
» E = set of edges = a subset of V x V = {(v;,v;)}

> |El=0(V]?)
» dense graph: |E| ~ |V|?
> sparse graph: |E| ~ |V|
> If G is connected, then |E| > |V| — 1.

» Some variants

undirected: edge (u,v) = (v,u)

directed: (u,v) is edge from u to v.
weighted: weight on either edge or vertex
multigraph: multiple edges between vertices

vVYyVvVvyy

Notion of graphs

Basic terminology
» Graph G = (V, E):
» V = {v;} = set of vertices
» E = set of edges = a subset of V x V = {(v;,v;)}

> |El=0(V]?)
» dense graph: |E| ~ |V|?
> sparse graph: |E| ~ |V|
» If G is connected, then |E| > |V| — 1.

» Some variants

undirected: edge (u,v) = (v,u)

directed: (u,v) is edge from u to v.
weighted: weight on either edge or vertex
multigraph: multiple edges between vertices

vVYyVvVvyy

> Reading: Appendix B.4, pp.1168-1172 of [CLRS,3rd ed.]

Notion of graphs
Representing a graph by an Adjacency Matrix A

> A= (a;;) is a |[V| x |V| matrix, where

= 1, if (Ui,’l)j> cF
71 0, otherwise

3/6

Notion of graphs
Representing a graph by an Adjacency Matrix A

> A= (a;;) is a |[V| x |V| matrix, where

= 1, if (vi,vj) cFk
71 0, otherwise

> If G is undirected, A is symmetric, i.e., AT = A.

3/6

Notion of graphs
Representing a graph by an Adjacency Matrix A

> A= (a;;) is a |[V| x |V| matrix, where

= 1, if (Ui,’l)j> cF
71 0, otherwise

> If G is undirected, A is symmetric, i.e., AT = A.

» A is typically very sparse
use a sparse storage scheme in practice

3/6

Notion of graphs
Representing a graph by an Incidence Matrix B
> B = (b;;) is a |V| x |E| matrix, where
1, if edge e; enters vertex v;

bij = —1, if edge e; leaves vertex v;
0, otherwise

6

Notion of graphs
Representing a graph by an Adjacency List
» For each vertex v,

Adj[v] = { vertices adjacent to v }

6

Notion of graphs
Representing a graph by an Adjacency List
» For each vertex v,

Adj[v] = { vertices adjacent to v }
» Variation: could also keep second list of edges coming into vertex.

6

Notion of graphs
Representing a graph by an Adjacency List
» For each vertex v,
Adj[v] = { vertices adjacent to v }

» Variation: could also keep second list of edges coming into vertex.

» How much storage is needed?

6

Notion of graphs
Representing a graph by an Adjacency List
» For each vertex v,
Adj[v] = { vertices adjacent to v }
» Variation: could also keep second list of edges coming into vertex.

» How much storage is needed?
Answer: O(|V| + |E|) (“sparse representation”)

Notion of graphs

Degree of a vertex

Notion of graphs

Degree of a vertex

» undirected graph:

> The degree of a vertex = the number of incident edges

Notion of graphs

Degree of a vertex

» undirected graph:

> The degree of a vertex = the number of incident edges

> The handshaking theorem:

Z degree(V) = 2|E|

veV

= total number of items in the adjacency list

Notion of graphs

Degree of a vertex

» undirected graph:

> The degree of a vertex = the number of incident edges

> The handshaking theorem:

Z degree(V) = 2|E|

veV

= total number of items in the adjacency list

» directed graph (digraph):

» out-degree and in-degree

Notion of graphs

Degree of a vertex

» undirected graph:

> The degree of a vertex = the number of incident edges
> The handshaking theorem:
Z degree(V) = 2|E|
veV
= total number of items in the adjacency list
» directed graph (digraph):
» out-degree and in-degree

> Z out-degree(V) = Z in-degree(V) = |E]|
veEV veV

