VIl. Graph Algorithms
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> Reading: Appendix B.4, pp.1168-1172 of [CLRS,3rd ed.]
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Representing a graph by an Adjacency Matrix A

> A= (a;;) is a |[V| x |V| matrix, where

= 1, if (Ui,’l)j> cF
71 0, otherwise

> If G is undirected, A is symmetric, i.e., AT = A.

» A is typically very sparse
use a sparse storage scheme in practice
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Notion of graphs
Representing a graph by an Incidence Matrix B
> B = (b;;) is a |V| x |E| matrix, where
1, if edge e; enters vertex v;

bij = —1, if edge e; leaves vertex v;
0, otherwise
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Notion of graphs
Representing a graph by an Adjacency List
» For each vertex v,
Adj[v] = { vertices adjacent to v }
» Variation: could also keep second list of edges coming into vertex.

» How much storage is needed?
Answer: O(|V| + |E|) (“sparse representation”)
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Notion of graphs

Degree of a vertex

» undirected graph:

> The degree of a vertex = the number of incident edges
> The handshaking theorem:
Z degree(V) = 2|E|
veV
= total number of items in the adjacency list
» directed graph (digraph):
» out-degree and in-degree

> Z out-degree(V) = Z in-degree(V) = |E]|
veEV veV



