VII. Graph Algorithms

Notion of graphs

Basic terminology

- Graph $G=(V, E)$:
- $V=\left\{v_{i}\right\}=$ set of vertices
- $E=$ set of edges $=$ a subset of $\underline{V \times V=\left\{\left(v_{i}, v_{j}\right)\right\}}$

Notion of graphs

Basic terminology

- Graph $G=(V, E)$:
- $V=\left\{v_{i}\right\}=$ set of vertices
- $E=$ set of edges $=$ a subset of $V \times V=\left\{\left(v_{i}, v_{j}\right)\right\}$
- $|E|=O\left(|V|^{2}\right)$
- dense graph: $|E| \approx|V|^{2}$
- sparse graph: $|E| \approx|V|$
- If G is connected, then $|E| \geq|V|-1$.

Notion of graphs

Basic terminology

- Graph $G=(V, E)$:
- $V=\left\{v_{i}\right\}=$ set of vertices
- $E=$ set of edges $=$ a subset of $V \times V=\left\{\left(v_{i}, v_{j}\right)\right\}$
- $|E|=O\left(|V|^{2}\right)$
- dense graph: $|E| \approx|V|^{2}$
- sparse graph: $|E| \approx|V|$
- If G is connected, then $|E| \geq|V|-1$.
- Some variants
- undirected: edge $(u, v)=(v, u)$

Notion of graphs

Basic terminology

- Graph $G=(V, E)$:
- $V=\left\{v_{i}\right\}=$ set of vertices
- $E=$ set of edges $=$ a subset of $V \times V=\left\{\left(v_{i}, v_{j}\right)\right\}$
- $|E|=O\left(|V|^{2}\right)$
- dense graph: $|E| \approx|V|^{2}$
- sparse graph: $|E| \approx|V|$
- If G is connected, then $|E| \geq|V|-1$.
- Some variants
- undirected: edge $(u, v)=(v, u)$
- directed: (u, v) is edge from u to v.

Notion of graphs

Basic terminology

- Graph $G=(V, E)$:
- $V=\left\{v_{i}\right\}=$ set of vertices
- $E=$ set of edges $=$ a subset of $\underline{V \times V=\left\{\left(v_{i}, v_{j}\right)\right\}}$
- $|E|=O\left(|V|^{2}\right)$
- dense graph: $|E| \approx|V|^{2}$
- sparse graph: $|E| \approx|V|$
- If G is connected, then $|E| \geq|V|-1$.
- Some variants
- undirected: edge $(u, v)=(v, u)$
- directed: (u, v) is edge from u to v.
- weighted: weight on either edge or vertex

Notion of graphs

Basic terminology

- Graph $G=(V, E)$:
- $V=\left\{v_{i}\right\}=$ set of vertices
- $E=$ set of edges $=$ a subset of $\underline{V \times V=\left\{\left(v_{i}, v_{j}\right)\right\}}$
- $|E|=O\left(|V|^{2}\right)$
- dense graph: $|E| \approx|V|^{2}$
- sparse graph: $|E| \approx|V|$
- If G is connected, then $|E| \geq|V|-1$.
- Some variants
- undirected: edge $(u, v)=(v, u)$
- directed: (u, v) is edge from u to v.
- weighted: weight on either edge or vertex
- multigraph: multiple edges between vertices

Notion of graphs

Basic terminology

- Graph $G=(V, E)$:
- $V=\left\{v_{i}\right\}=$ set of vertices
- $E=$ set of edges $=$ a subset of $\underline{V \times V=\left\{\left(v_{i}, v_{j}\right)\right\}}$
- $|E|=O\left(|V|^{2}\right)$
- dense graph: $|E| \approx|V|^{2}$
- sparse graph: $|E| \approx|V|$
- If G is connected, then $|E| \geq|V|-1$.
- Some variants
- undirected: edge $(u, v)=(v, u)$
- directed: (u, v) is edge from u to v.
- weighted: weight on either edge or vertex
- multigraph: multiple edges between vertices
- Reading: Appendix B.4, pp.1168-1172 of [CLRS,3rd ed.]

Notion of graphs

Representing a graph by an Adjacency Matrix A

- $A=\left(a_{i j}\right)$ is a $|V| \times|V|$ matrix, where

$$
a_{i j}= \begin{cases}1, & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Notion of graphs

Representing a graph by an Adjacency Matrix A

- $A=\left(a_{i j}\right)$ is a $|V| \times|V|$ matrix, where

$$
a_{i j}= \begin{cases}1, & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0, & \text { otherwise }\end{cases}
$$

- If G is undirected, A is symmetric, i.e., $A^{T}=A$.

Notion of graphs

Representing a graph by an Adjacency Matrix A

- $A=\left(a_{i j}\right)$ is a $|V| \times|V|$ matrix, where

$$
a_{i j}= \begin{cases}1, & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0, & \text { otherwise }\end{cases}
$$

- If G is undirected, A is symmetric, i.e., $A^{T}=A$.
- A is typically very sparse use a sparse storage scheme in practice

Notion of graphs

Representing a graph by an Incidence Matrix B

- $B=\left(b_{i j}\right)$ is a $|V| \times|E|$ matrix, where

$$
b_{i j}= \begin{cases}1, & \text { if edge } e_{j} \text { enters vertex } v_{i} \\ -1, & \text { if edge } e_{j} \text { leaves vertex } v_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,

$$
\operatorname{Adj}[v]=\{\text { vertices adjacent to } v\}
$$

Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,
$\operatorname{Adj}[v]=\{$ vertices adjacent to $v\}$
- Variation: could also keep second list of edges coming into vertex.

Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,

$$
\operatorname{Adj}[v]=\{\text { vertices adjacent to } v\}
$$

- Variation: could also keep second list of edges coming into vertex.
- How much storage is needed?

Notion of graphs

Representing a graph by an Adjacency List

- For each vertex v,

$$
\operatorname{Adj}[v]=\{\text { vertices adjacent to } v\}
$$

- Variation: could also keep second list of edges coming into vertex.
- How much storage is needed? Answer: $\Theta(|V|+|E|)$ ("sparse representation")

Notion of graphs
Degree of a vertex

Notion of graphs

Degree of a vertex

- undirected graph:
- The degree of a vertex $=$ the number of incident edges

Notion of graphs

Degree of a vertex

- undirected graph:
- The degree of a vertex $=$ the number of incident edges
- The handshaking theorem:

$$
\begin{aligned}
\sum_{v \in V} \operatorname{degree}(V) & =2|E| \\
& =\text { total number of items in the adjacency list }
\end{aligned}
$$

Notion of graphs

Degree of a vertex

- undirected graph:
- The degree of a vertex $=$ the number of incident edges
- The handshaking theorem:

$$
\sum_{v \in V} \operatorname{degree}(V)=2|E|
$$

$=$ total number of items in the adjacency list

- directed graph (digraph):
- out-degree and in-degree

Notion of graphs

Degree of a vertex

- undirected graph:
- The degree of a vertex $=$ the number of incident edges
- The handshaking theorem:

$$
\sum_{v \in V} \operatorname{degree}(V)=2|E|
$$

$=$ total number of items in the adjacency list

- directed graph (digraph):
- out-degree and in-degree
- $\sum_{v \in V}$ out-degree $(V)=\sum_{v \in V}$ in-degree $(V)=|E|$

