ECS122A Lecture Notes on Algorithm Design and Analysis

Spring 2019
http://www.cs.ucdavis.edu/~bai/ECS122A

Professor Zhaojun Bai

Overview

I. Introduction and getting started
II. Growth of functions and asymptotic notations
III. Divide-and-conquer recurrences and the master theorem
IV. Divide-and-conquer algorithms
V. Greedy algorithms
VI. Dynamic programming
VII. Graph algorithms
VIII. NP-completeness

Based on Chapters 1-4, 15-16, 22-25 and 34-35 of the textbook.

I. Introduction and Getting Started

Introduction

- Algorithm is a tool for solving a well-specified computational problem

Introduction

- Algorithm is a tool for solving a well-specified computational problem
- An algorithm is a well-defined procedure for transforming some input into a desired output

Introduction

- Algorithm is a tool for solving a well-specified computational problem
- An algorithm is a well-defined procedure for transforming some input into a desired output
- A poem by D. Berlinski in "Advent of the Algorithm"

In the logician's voice:
an algorithm is
a finite procedure,
written in a fixed symbolic vocabulary
governed by precise instructions, moving in discrete steps, 1, 2, 3, ... whose execution requires no insight, cleverness, intuition, intelligence, or perspicuity
and that sooner or later comes to an end.

Introduction

- Algorithm is a tool for solving a well-specified computational problem
- An algorithm is a well-defined procedure for transforming some input into a desired output
- A poem by D. Berlinski in "Advent of the Algorithm"

In the logician's voice:
an algorithm is
a finite procedure,
written in a fixed symbolic vocabulary
governed by precise instructions,
moving in discrete steps, 1, 2, 3, ...
whose execution requires no insight, cleverness,
intuition, intelligence, or perspicuity
and that sooner or later comes to an end.

- Algorithms as a technology How Algorithms Shape Our World, a TED talk by Kevin Slavin

Introduction

- Basic questions about an algorithm

1. Does it halt?
2. Is it correct?
3. Is it fast? (Can it be faster?)
4. How much memory does it use?
5. How does data communicate?

Getting started: example 1

- Fibonacci numbers:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for } \quad n \geq 2
\end{aligned}
$$

Getting started: example 1

- Fibonacci numbers:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for } \quad n \geq 2
\end{aligned}
$$

- Fibonacci numbers grow almost as fast as the power of 2 :

$$
F_{n} \approx 2^{0.694 n}
$$

Getting started: example 1

- Fibonacci numbers:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for } \quad n \geq 2
\end{aligned}
$$

- Fibonacci numbers grow almost as fast as the power of 2:

$$
F_{n} \approx 2^{0.694 n}
$$

- Problem statement:
computing the n-th Fibonacci number F_{n}

Getting started: example 1

- Fibonacci numbers:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1, \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for } \quad n \geq 2
\end{aligned}
$$

- Fibonacci numbers grow almost as fast as the power of 2:

$$
F_{n} \approx 2^{0.694 n}
$$

- Problem statement:
computing the n-th Fibonacci number F_{n}
- Algorithms for computing the n-th Fibonacci number F_{n} :

1. Recursion ("top-down")
2. Iteration ("bottom-up", memoization)
3. Divide-and-conquer
4. Approximation

Getting started: example 2

- Problem statment:

$$
\text { Input: a sequence of } n \text { numbers }\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle
$$

Output: a permutation (reordering) $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ of the a-sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$
In short, sorting

Getting started: example 2

- Problem statment:

$$
\begin{aligned}
& \text { Input: a sequence of } n \text { numbers }\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \\
& \text { Output: a permutation (reordering) }\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle \text { of the } \\
& a \text {-sequence such that } a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}
\end{aligned}
$$

In short, sorting

- Algorithms:

1. Insertion sort
2. Merge sort

Getting started: example 2

Insert sort algorithm

- Idea: incremental approach
- Pseudocode

> InsertionSort(A)
$1 \mathrm{n}=$ length (A)
2 for $j=2$ to n
$3 \quad$ key $=A[j]$
4
5
6
7
8
// insert '‘key'' into sorted array A[1...j-1]
i $=j-1$
while i > 0 and $\mathrm{A}[\mathrm{i}] \quad>\mathrm{key}$ do $\mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]$ i $=$ i-1
end while
10
$\mathrm{A}[\mathrm{i}+1]=\mathrm{key}$
end for
12 return A

Getting started: example 2

Remarks:

- Correctness: argued by "loop-invariant" (a kind of induction)
- Complexity analysis: let $T(n)$ be the number of operations for sorting an array of length n, and t_{j} be the number of while-loop executed for j, then

$$
T(n)=\sum_{j=2}^{n}\left(1+1+t_{j}+1\right)=3(n-1)+\sum_{j=2}^{n} t_{j}
$$

- best-case: $t_{j}=1$ and $T(n)=4(n-1)=O(n)$
- worst-case: $t_{j}=j$ and $T(n)=3(n-1)+\sum_{j=2}^{n} j=O\left(n^{2}\right)$
- average-case: $t_{j}=\frac{j}{2}$ and $T(n)=3(n-1)+\sum_{j=2}^{n} \frac{j}{2}=O\left(n^{2}\right)$
- Insertion sort is a "sort-in-place", no extra memory necessary
- Importance of writing a good pseudocode = "expressing algorithm to human"
- There is a recurisve version of insertion sort, see Homework 1.

Getting started: example 2

Merge sort algorithm

- Idea: divide-and-conquer approach
- Pseudocode

	MergeSort (A,p,r) //	// Merge-sort of array A[p..r]
1	if $\mathrm{p}<\mathrm{r}$ then	// check for base case
2	$\mathrm{q}=$ flooring $(\mathrm{p}+\mathrm{r}) / 2$) /	// divide
3	MergeSort (A,p,q) //	// conquer
4	MergeSort (A,q+1,r) //	// conquer
5	$\operatorname{Merge}(\mathrm{A}, \mathrm{p}, \mathrm{q}, \mathrm{r})$	// combine
6	end if	

Getting started: example 2

- Pseudocode, cont'd

```
\(\operatorname{Merge}(A, p, q, r)\)
\(\mathrm{n} 1=\mathrm{q}-\mathrm{p}+1 ; \mathrm{n} 2=\mathrm{r}-\mathrm{q}\)
for \(i=1\) to \(n 1 \quad / /\) create \(\operatorname{arrays} L[1 \ldots n 1+1]\) and \(R[1 \ldots n 2+1]\)
    \(\mathrm{L}[\mathrm{i}]=\mathrm{A}[\mathrm{p}+\mathrm{i}-1]\)
end for
for \(j=1\) to \(n 2\)
    \(R[j]=A[q+j]\)
end for
\(\mathrm{L}[\mathrm{n} 1+1]=\) infty \(; \mathrm{R}[\mathrm{n} 2+1]=\) infty \(/ / \operatorname{mark}\) the end of arrays \(L\) and \(R\)
\(i=1 ; j=1\)
for \(k=p\) to \(r \quad / /\) Merge arrays \(L\) and \(R\) to \(A\)
    if \(L[i]<=R[j]\) then
        \(\mathrm{A}[\mathrm{k}]=\mathrm{L}[\mathrm{i}]\)
        \(i=i+1\)
    else
        \(A[k]=R[j]\)
        \(j=j+1\)
    end if
end for
```


Getting started: example 2

- Merge sort is a divide-and-conquer algorithm consisting of three steps: divide, conquer and combine
- To sort the entire sequence $A[1 \ldots n]$, we make the initial call
MergeSort(A,1,n)
where $\mathrm{n}=$ length (A).
- Complexity analysis:

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+n-1=O(n \lg (n))
$$

