Greedy algorithms - Recap

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence

Greedy algorithms - Recap

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:

Greedy algorithms - Recap

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
- The greedy-choice property a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

Greedy algorithms - Recap

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
- The greedy-choice property a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- The optimal substructure property an optimal solution to the problem contains within it optimal solution to subprograms.

Greedy algorithms - Recap

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
- The greedy-choice property a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- The optimal substructure property an optimal solution to the problem contains within it optimal solution to subprograms.
- Greedy algorithms do not always yield optimal solutions, but for many problems they do.

0-1 knapsack problem

Problem statement:

- Given n items $\{1,2, \ldots, n\}$
- Item i is worth v_{i}, and weight w_{i}
- Find a most valuable subset of items with total weight $\leq W$

0-1 knapsack problem

Problem statement:

- Given n items $\{1,2, \ldots, n\}$
- Item i is worth v_{i}, and weight w_{i}
- Find a most valuable subset of items with total weight $\leq W$

Rule: have to either take an item or not take it ("0-1 Knapsack") - cannot take part of it.

0-1 knapsack problem

Problem statement:

- Given n items $\{1,2, \ldots, n\}$
- Item i is worth v_{i}, and weight w_{i}
- Find a most valuable subset of items with total weight $\leq W$

Rule: have to either take an item or not take it ("0-1 Knapsack") - cannot take part of it.

Example:

- Given

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4

Total weight $W=5$

- Find a most valuable subset of items with total weight $\leq W=5$

0-1 knapsack problem

Problem statement, mathematically - version 1:
Find a subset $\mathcal{S} \subseteq\{1,2, \ldots, n\}$ such that

$$
\begin{aligned}
\text { maximize } & \sum_{i \in \mathcal{S}} v_{i} \\
\text { subject to } & \sum_{i \in \mathcal{S}} w_{i} \leq W
\end{aligned}
$$

0-1 knapsack problem

Problem statement, mathematically - version 2:
Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and

$$
x_{i}= \begin{cases}1 & i \text {-th item is in the knapsack } \\ 0 & i \text {-th item is not in the knapsack }\end{cases}
$$

Then the knapsack problem is

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i=1}^{n} v_{i} x_{i} \\
\text { subject to } & x_{i} \in\{0,1\} \\
& \sum_{i=1}^{n} w_{i} x_{i} \leq W
\end{array}
$$

0-1 knapsack problem

The brute-force algorithm

0-1 knapsack problem

The brute-force algorithm

- 2^{n} feasible solutions

0-1 knapsack problem

The brute-force algorithm

- 2^{n} feasible solutions
- Total cost $=O\left(n \cdot 2^{n}\right)$

0-1 knapsack problem

Three possible greedy strategies:

1. Greedy by highest value v_{i}

0-1 knapsack problem

Three possible greedy strategies:

1. Greedy by highest value v_{i}
2. Greedy by least weight w_{i}

0-1 knapsack problem

Three possible greedy strategies:

1. Greedy by highest value v_{i}
2. Greedy by least weight w_{i}
3. Greedy by largest value density $\frac{v_{i}}{w_{i}}$

0-1 knapsack problem

Example

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4
Total weight			

0-1 knapsack problem

Example

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4
Total weight $W=5$			

Greedy by value density v_{i} / w_{i} :

- take items 1 and 2.
- value $=16$, weight $=3$
- Leftover capacity $=2$

0-1 knapsack problem

Example

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4
Total weight $W=5$			

Greedy by value density v_{i} / w_{i} :

- take items 1 and 2.
- value $=16$, weight $=3$
- Leftover capacity $=2$

Optimal solution

- take items 2 and 3 .
- value $=22$, weight $=5$
- no leftover capacity

0-1 knapsack problem

Example

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4
Total weight $W=5$			

Greedy by value density v_{i} / w_{i} :

- take items 1 and 2.
- value $=16$, weight $=3$
- Leftover capacity $=2$

Optimal solution

- take items 2 and 3 .
- value $=22$, weight $=5$
- no leftover capacity

Question: how about greedy by highest value? by least weight?

0-1 knapsack problem

Another example
Given the following six items with $W=100$:

				Greedy by			optimal solution
i	v_{i}	w_{i}	v_{i} / w_{i}	value	weight	v_{i} / w_{i}	
1	40	100	0.4	1	0	0	0
2	35	50	0.7	0	0	1	$\mathbf{1}$
3	18	45	0.4	0	1	0	$\mathbf{1}$
4	4	20	0.2	0	1	1	0
5	10	10	1	0	1	1	0
6	2	5	0.4	0	1	1	$\mathbf{1}$
Total value					40	34	51
Total weight					100	80	85

0-1 knapsack problem

Another example
Given the following six items with $W=100$:

				Greedy by			optimal solution
i	v_{i}	w_{i}	v_{i} / w_{i}	value	weight	v_{i} / w_{i}	
1	40	100	0.4	1	0	0	0
2	35	50	0.7	0	0	1	$\mathbf{1}$
3	18	45	0.4	0	1	0	$\mathbf{1}$
4	4	20	0.2	0	1	1	0
5	10	10	1	0	1	1	0
6	2	5	0.4	0	1	1	$\mathbf{1}$
Total value					40	34	51
Total weight					100	80	85

All three greedy approaches generate feasible solutions, but none of them generate the optimal solution. Greedy algorithms doesn't work for the 0-1 knapsack problem!

