Greedy algorithms – Recap

► A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence

Greedy algorithms - Recap

- ► A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- ► The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:

Greedy algorithms - Recap

- ► A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- ► The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
 - The greedy-choice property a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

Greedy algorithms - Recap

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- ► The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
 - The greedy-choice property a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - ► The optimal substructure property
 an optimal solution to the problem contains within it optimal solution
 to subprograms.

Greedy algorithms – Recap

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- ► The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
 - ► The greedy-choice property
 a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
 - ► The optimal substructure property an optimal solution to the problem contains within it optimal solution to subprograms.
- Greedy algorithms do not always yield optimal solutions, but for many problems they do.

Problem statement:

- ▶ Given n items $\{1, 2, \dots, n\}$
- ▶ Item i is worth v_i , and weight w_i
- ▶ Find a most valuable subset of items with total weight $\leq W$

Problem statement:

- ▶ Given n items $\{1, 2, \dots, n\}$
- ▶ Item i is worth v_i , and weight w_i
- Find a most valuable subset of items with total weight $\leq W$

Rule: have to either take an item or not take it ("0-1 Knapsack") – cannot take part of it.

Problem statement:

- ▶ Given n items $\{1, 2, \ldots, n\}$
- ▶ Item i is worth v_i , and weight w_i
- ightharpoonup Find a most valuable subset of items with total weight $\leq W$

Rule: have to either take an item or not take it ("0-1 Knapsack") – cannot take part of it.

Example:

▶ Given

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

Total weight
$$W=5$$

lacktriangle Find a most valuable subset of items with total weight $\leq W = 5$

Problem statement, mathematically – version 1: Find a subset $\mathbb{S} \subseteq \{1,2,\ldots,n\}$ such that $\max \sum_{i \in \mathbb{S}} v_i$

 $\textit{subject to} \quad \sum_{i \in \mathbb{S}} w_i \leq W$

Problem statement, *mathematically* – version 2:

Let
$$x = (x_1, x_2, ..., x_n)$$
, and

$$x_i = \left\{ \begin{array}{ll} 1 & \textit{i-th item is in the knapsack} \\ 0 & \textit{i-th item is not in the knapsack} \end{array} \right.$$

Then the knapsack problem is

maximize
$$\sum_{i=1}^n v_i x_i$$
 subject to $x_i \in \{0,1\}$
$$\sum_{i=1}^n w_i x_i \leq W$$

The brute-force algorithm

The brute-force algorithm

 $ightharpoonup 2^n$ feasible solutions

The brute-force algorithm

- $ightharpoonup 2^n$ feasible solutions
- ▶ Total cost = $O(n \cdot 2^n)$

Three possible **greedy** strategies:

1. Greedy by highest value v_i

Three possible **greedy** strategies:

- 1. Greedy by highest value v_i
- 2. Greedy by least weight w_i

Three possible greedy strategies:

- 1. Greedy by highest value v_i
- 2. Greedy by least weight w_i
- 3. Greedy by largest value density $\frac{v_i}{w_i}$

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

 ${\it Total\ weight}\ W=5$

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

 ${\it Total\ weight}\ W=5$

Greedy by value density v_i/w_i :

- ▶ take items 1 and 2.
- ightharpoonup value = 16, weight = 3
- ▶ Leftover capacity = 2

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

 ${\it Total\ weight}\ W=5$

Greedy by value density v_i/w_i :

- ▶ take items 1 and 2.
- ightharpoonup value = 16, weight = 3
- ► Leftover capacity = 2

Optimal solution

- take items 2 and 3.
- ightharpoonup value = 22, weight = 5
- no leftover capacity

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

Total weight ${\cal W}=5$

Greedy by value density v_i/w_i :

- ▶ take items 1 and 2.
- ightharpoonup value = 16, weight = 3
- ► Leftover capacity = 2

Optimal solution

- ▶ take items 2 and 3.
- ightharpoonup value = 22, weight = 5
- no leftover capacity

Question: how about greedy by highest value? by least weight?

Another example

Given the following six items with W=100:

				Greedy by			optimal solution
i	v_i	w_i	v_i/w_i	value	weight	v_i/w_i	
1	40	100	0.4	1	0	0	0
2	35	50	0.7	0	0	1	1
3	18	45	0.4	0	1	0	1
4	4	20	0.2	0	1	1	0
5	10	10	1	0	1	1	0
6	2	5	0.4	0	1	1	1
Total value		40	34	51	55		
Total weight		100	80	85	100		

Another example

Given the following six items with W = 100:

				Greedy by			optimal solution
i	v_i	w_i	v_i/w_i	value	weight	v_i/w_i	
1	40	100	0.4	1	0	0	0
2	35	50	0.7	0	0	1	1
3	18	45	0.4	0	1	0	1
4	4	20	0.2	0	1	1	0
5	10	10	1	0	1	1	0
6	2	5	0.4	0	1	1	1
Total value		40	34	51	55		
Total weight			100	80	85	100	

All three greedy approaches generate feasible solutions, but none of them generate the optimal solution. Greedy algorithms doesn't work for the 0-1 knapsack problem!