
0-1 knapsack problem revisited

Problem:

Input: n items {1, 2, . . . , n}
Item i is worth vi and weight wi

Total weight W

Output: a subset S ⊆ {1, 2, . . . , n} such that∑
i∈S

wi ≤W and
∑
i∈S

vi is maximized

Equivalently, the problem can be cast as follows:

maxxi∈{0,1}

n∑
i=1

vixi

s.t.
n∑

i=1

wixi ≤W
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0-1 knapsack problem revisited

Greedy solution strategy: three possible greedy approaches:

1. Greedy by highest value vi

2. Greedy by least weight wi

3. Greedy by largest value density
vi
wi

All three appraches generate feasible solutions. However, cannot guarantee
to always generate an optimal solution!
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0-1 knapsack problem revisited

Example 1:

i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4
Total weight W = 5

Greedy by value density vi/wi:

I take items 1 and 2.

I value = 16, weight = 3

Optimal solution – by inspection

I take items 2 and 3.

I value = 22, weight = 5
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0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

Let ik be the highest-numberd item in an optimal solution
S = {i1, . . . , ik−1, ik}, Then

1. S′ = S − {ik} is an optimal solution for weight W −wik and
items {i1, . . . , ik−1}

2. the value of the solution S is

vik + the value of the subproblem solution S′
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0-1 knapsack problem revisited

I Define
c[i, w] = value of an optimal solution for items {1, . . . , i}

and maximum weight w.

I Then we have the following two cases for the item i > 0:

I Case 1 (wi > w): the weight of item i is larger than the weight limit
w, then item i cannot be included, and

c[i, w] = c[i− 1, w]

I Case 2 (wi ≤ w): we have two choices:
I choice 1: includes item i, in which case it is vi plus a subproblem

solution for i− 1 items and the weight excluding wi.
I choice 2: does not include item i, in which case it is a subproblem

solution of i− 1 items and the same weight.

The better of these two choices should be made., that is

c[i, w] = max{ vi + c[i− 1, w − wi]︸ ︷︷ ︸
choice 1

, c[i− 1, w]︸ ︷︷ ︸
choice 2

}
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0-1 knapsack problem revisited

I In summary,

c[i, w] =

 0 if i = 0 or w = 0
c[i− 1, w] if i > 0 and wi > w
max {vi + c[i− 1, w − wi], c[i− 1, w]} if i > 0 and wi ≤ w

I The value of an optimal solution = c[n,W ].

I The set of items to take can be deduced from the c-table by starting
at c[n,W ] and tracing where the optimal values came from as follows:

I If c[i, w] = c[i− 1, w], item i is not part of the solution, and we
continue tracing with c[i− 1, w].

I If c[i, w] 6= c[i− 1, w], item i is part of the solution, and we continue
tracing with c[i− 1, w − wi].

I Running time: Θ(nW ):
I Θ(nW ) to fill in the c table

(n+ 1)(W + 1) entries each requiring Θ(1) time
I O(n) time to trace the solution

starts in row n and moves up 1 row at each step.
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0-1 knapsack problem revisited

Example 1:

i vi wi vi/wi

1 6 1 6
2 10 2 5
3 12 3 4
Total weight W = 5

By dynamic programming, we generate the following c-table:

i\w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 6 6 6 6 6
2 0 6 10 16 16 16
3 0 6 10 16 18 22

By the table, we have

I Optimal value = c[3, 5] = 22.

I The optimal solution (the items to take): S = {3, 2}
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0-1 knapsack problem revisited

Example 2: We have n = 9 items with

I value = v = [2, 3, 3, 4, 4, 5, 7, 8, 8]

I weight = w = [3, 5, 7, 4, 3, 9, 2, 11, 5];

I Total allowable weight W = 15

DP generates the following c-table:

i/w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2

2 0 0 0 2 2 3 3 3 5 5 5 5 5 5 5 5

3 0 0 0 2 2 3 3 3 5 5 5 5 6 6 6 8

4 0 0 0 2 4 4 4 6 6 7 7 7 9 9 9 9

5 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

6 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

7 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

8 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

9 0 0 7 7 7 11 11 15 15 15 19 19 19 21 23 23

By the table, we have

I Optimal value = c[9, 15] = 23.

I The set of items to take S = {9, 7, 5, 4}.
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Dynamic Programming – Summary

I Not a specific algorithm, but a technique
(like Divide-and-Conquer and Greedy algorithms)

I Four-step (two-phase) technique:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information
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Dynamic Programming – Summary

Elements of DP:

1. Optimal substructure:

the optimal solution to the problem contains optimal
solutions to subprograms =⇒ recursive algorithm

Example: LCS, recursive formulation and tree

2. Overlapping subproblems:

There are few subproblems in total, and many recurring
instances of each. (unlike divide-and-conquer, where
subproblems are independent)

Example: LCS has only mn distinct subproblems

3. Memoization:
after computing solutions to subproblems, store in table,
subsequent calls do table lookup.

Example: LCS has running time Θ(mn)
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