0-1 knapsack problem revisited

Problem:

Input: n items $\{1,2, \ldots, n\}$
Item i is worth v_{i} and weight w_{i}
Total weight W

0-1 knapsack problem revisited

Problem:

Input: n items $\{1,2, \ldots, n\}$
Item i is worth v_{i} and weight w_{i}
Total weight W
Output: a subset $S \subseteq\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in S} w_{i} \leq W \quad \text { and } \quad \sum_{i \in S} v_{i} \quad \text { is maximized }
$$

0-1 knapsack problem revisited

Problem:

Input: n items $\{1,2, \ldots, n\}$
Item i is worth v_{i} and weight w_{i}
Total weight W
Output: a subset $S \subseteq\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in S} w_{i} \leq W \quad \text { and } \quad \sum_{i \in S} v_{i} \quad \text { is maximized }
$$

Equivalently, the problem can be cast as follows:

$$
\begin{aligned}
\max _{x_{i} \in\{0,1\}} & \sum_{i=1}^{n} v_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} w_{i} x_{i} \leq W
\end{aligned}
$$

0-1 knapsack problem revisited

Greedy solution strategy: three possible greedy approaches:

1. Greedy by highest value v_{i}
2. Greedy by least weight w_{i}
3. Greedy by largest value density $\frac{v_{i}}{w_{i}}$

0-1 knapsack problem revisited

Greedy solution strategy: three possible greedy approaches:

1. Greedy by highest value v_{i}
2. Greedy by least weight w_{i}
3. Greedy by largest value density $\frac{v_{i}}{w_{i}}$

All three appraches generate feasible solutions. However, cannot guarantee to always generate an optimal solution!

0-1 knapsack problem revisited

Example 1:

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4

Total weight $W=5$

Greedy by value density v_{i} / w_{i} :

- take items 1 and 2 .
- value $=16$, weight $=3$

0-1 knapsack problem revisited

Example 1:

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4

Total weight $W=5$

Greedy by value density v_{i} / w_{i} :

- take items 1 and 2.
- value $=16$, weight $=3$

Optimal solution - by inspection

- take items 2 and 3.
- value $=22$, weight $=5$

0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

Let i_{k} be the highest-numberd item in an optimal solution $S=\left\{i_{1}, \ldots, i_{k-1}, i_{k}\right\}$, Then

1. $S^{\prime}=S-\left\{i_{k}\right\}$ is an optimal solution for weight $W-w_{i_{k}}$ and items $\left\{i_{1}, \ldots, i_{k-1}\right\}$

0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

Let i_{k} be the highest-numberd item in an optimal solution $S=\left\{i_{1}, \ldots, i_{k-1}, i_{k}\right\}$, Then

1. $S^{\prime}=S-\left\{i_{k}\right\}$ is an optimal solution for weight $W-w_{i_{k}}$ and items $\left\{i_{1}, \ldots, i_{k-1}\right\}$
2. the value of the solution S is
$v_{i_{k}}+$ the value of the subproblem solution S^{\prime}

0-1 knapsack problem revisited

- Define

$$
\begin{aligned}
c[i, w]= & \text { value of an optimal solution for items }\{1, \ldots, i\} \\
& \text { and maximum weight } w .
\end{aligned}
$$

0-1 knapsack problem revisited

- Define

$$
\begin{aligned}
c[i, w]= & \text { value of an optimal solution for items }\{1, \ldots, i\} \\
& \text { and maximum weight } w .
\end{aligned}
$$

- Then we have the following two cases for the item $i>0$:
- Case $1\left(w_{i}>w\right)$: the weight of item i is larger than the weight limit w, then item i cannot be included, and

$$
c[i, w]=c[i-1, w]
$$

0-1 knapsack problem revisited

- Define

$$
\begin{aligned}
c[i, w]= & \text { value of an optimal solution for items }\{1, \ldots, i\} \\
& \text { and maximum weight } w .
\end{aligned}
$$

- Then we have the following two cases for the item $i>0$:
- Case $1\left(w_{i}>w\right)$: the weight of item i is larger than the weight limit w, then item i cannot be included, and

$$
c[i, w]=c[i-1, w]
$$

- Case $2\left(w_{i} \leq w\right)$: we have two choices:
- choice 1: includes item i, in which case it is v_{i} plus a subproblem solution for $i-1$ items and the weight excluding w_{i}.
- choice 2: does not include item i, in which case it is a subproblem solution of $i-1$ items and the same weight.

0-1 knapsack problem revisited

- Define

$$
\begin{aligned}
c[i, w]= & \text { value of an optimal solution for items }\{1, \ldots, i\} \\
& \text { and maximum weight } w .
\end{aligned}
$$

- Then we have the following two cases for the item $i>0$:
- Case $1\left(w_{i}>w\right)$: the weight of item i is larger than the weight limit w, then item i cannot be included, and

$$
c[i, w]=c[i-1, w]
$$

- Case $2\left(w_{i} \leq w\right)$: we have two choices:
- choice 1: includes item i, in which case it is v_{i} plus a subproblem solution for $i-1$ items and the weight excluding w_{i}.
- choice 2: does not include item i, in which case it is a subproblem solution of $i-1$ items and the same weight.
The better of these two choices should be made., that is

$$
c[i, w]=\max \{\underbrace{v_{i}+c\left[i-1, w-w_{i}\right]}_{\text {choice } 1}, \underbrace{c[i-1, w]}_{\text {choice } 2}\}
$$

0-1 knapsack problem revisited

- In summary,

$$
c[i, w]= \begin{cases}0 & \text { if } i=0 \text { or } w=0 \\ c[i-1, w] & \text { if } i>0 \text { and } w_{i}>w \\ \max \left\{v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right\} & \text { if } i>0 \text { and } w_{i} \leq w\end{cases}
$$

0-1 knapsack problem revisited

- In summary,

$$
c[i, w]= \begin{cases}0 & \text { if } i=0 \text { or } w=0 \\ c[i-1, w] & \text { if } i>0 \text { and } w_{i}>w \\ \max \left\{v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right\} & \text { if } i>0 \text { and } w_{i} \leq w\end{cases}
$$

- The value of an optimal solution $=c[n, W]$.

0-1 knapsack problem revisited

- In summary,

$$
c[i, w]= \begin{cases}0 & \text { if } i=0 \text { or } w=0 \\ c[i-1, w] & \text { if } i>0 \text { and } w_{i}>w \\ \max \left\{v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right\} & \text { if } i>0 \text { and } w_{i} \leq w\end{cases}
$$

- The value of an optimal solution $=c[n, W]$.
- The set of items to take can be deduced from the c-table by starting at $c[n, W]$ and tracing where the optimal values came from as follows:

0-1 knapsack problem revisited

- In summary,

$$
c[i, w]= \begin{cases}0 & \text { if } i=0 \text { or } w=0 \\ c[i-1, w] & \text { if } i>0 \text { and } w_{i}>w \\ \max \left\{v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right\} & \text { if } i>0 \text { and } w_{i} \leq w\end{cases}
$$

- The value of an optimal solution $=c[n, W]$.
- The set of items to take can be deduced from the c-table by starting at $c[n, W]$ and tracing where the optimal values came from as follows:
- If $c[i, w]=c[i-1, w]$, item i is not part of the solution, and we continue tracing with $c[i-1, w]$.

0-1 knapsack problem revisited

- In summary,

$$
c[i, w]= \begin{cases}0 & \text { if } i=0 \text { or } w=0 \\ c[i-1, w] & \text { if } i>0 \text { and } w_{i}>w \\ \max \left\{v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right\} & \text { if } i>0 \text { and } w_{i} \leq w\end{cases}
$$

- The value of an optimal solution $=c[n, W]$.
- The set of items to take can be deduced from the c-table by starting at $c[n, W]$ and tracing where the optimal values came from as follows:
- If $c[i, w]=c[i-1, w]$, item i is not part of the solution, and we continue tracing with $c[i-1, w]$.
- If $c[i, w] \neq c[i-1, w]$, item i is part of the solution, and we continue tracing with $c\left[i-1, w-w_{i}\right]$.

0-1 knapsack problem revisited

- In summary,

$$
c[i, w]= \begin{cases}0 & \text { if } i=0 \text { or } w=0 \\ c[i-1, w] & \text { if } i>0 \text { and } w_{i}>w \\ \max \left\{v_{i}+c\left[i-1, w-w_{i}\right], c[i-1, w]\right\} & \text { if } i>0 \text { and } w_{i} \leq w\end{cases}
$$

- The value of an optimal solution $=c[n, W]$.
- The set of items to take can be deduced from the c-table by starting at $c[n, W]$ and tracing where the optimal values came from as follows:
- If $c[i, w]=c[i-1, w]$, item i is not part of the solution, and we continue tracing with $c[i-1, w]$.
- If $c[i, w] \neq c[i-1, w]$, item i is part of the solution, and we continue tracing with $c\left[i-1, w-w_{i}\right]$.
- Running time: $\Theta(n W)$:
- $\Theta(n W)$ to fill in the c table $(n+1)(W+1)$ entries each requiring $\Theta(1)$ time
- $O(n)$ time to trace the solution starts in row n and moves up 1 row at each step.

0-1 knapsack problem revisited

Example 1:

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4

Total weight $W=5$
By dynamic programming, we generate the following c-table:

$i \backslash w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3	0	6	10	16	18	22

0-1 knapsack problem revisited

Example 1:

i	v_{i}	w_{i}	v_{i} / w_{i}
1	6	1	6
2	10	2	5
3	12	3	4

Total weight $W=5$
By dynamic programming, we generate the following c-table:

$i \backslash w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3	0	6	10	16	18	22

By the table, we have

- Optimal value $=c[3,5]=22$.
- The optimal solution (the items to take): $S=\{3,2\}$

0-1 knapsack problem revisited

Example 2: We have $n=9$ items with

- value $=v=[2,3,3,4,4,5,7,8,8]$
- weight $=w=[3,5,7,4,3,9,2,11,5]$;
- Total allowable weight $W=15$

0-1 knapsack problem revisited

Example 2: We have $n=9$ items with

- value $=v=[2,3,3,4,4,5,7,8,8]$
- weight $=w=[3,5,7,4,3,9,2,11,5]$;
- Total allowable weight $W=15$

DP generates the following c-table:

i / w	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2
2	0	0	0	2	2	3	3	3	5	5	5	5	5	5	5	5
3	0	0	0	2	2	3	3	3	5	5	5	5	6	6	6	8
4	0	0	0	2	4	4	4	6	6	7	7	7	9	9	9	9
5	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
6	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
7	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
8	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
9	0	0	7	7	7	11	11	15	15	15	19	19	19	21	23	23

0-1 knapsack problem revisited

Example 2: We have $n=9$ items with

- value $=v=[2,3,3,4,4,5,7,8,8]$
- weight $=w=[3,5,7,4,3,9,2,11,5]$;
- Total allowable weight $W=15$

DP generates the following c-table:

i / w	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2
2	0	0	0	2	2	3	3	3	5	5	5	5	5	5	5	5
3	0	0	0	2	2	3	3	3	5	5	5	5	6	6	6	8
4	0	0	0	2	4	4	4	6	6	7	7	7	9	9	9	9
5	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
6	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
7	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
8	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
9	0	0	7	7	7	11	11	15	15	15	19	19	19	21	23	23

By the table, we have

- Optimal value $=c[9,15]=23$.
- The set of items to take $S=\{9,7,5,4\}$.

Dynamic Programming - Summary

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)

Dynamic Programming - Summary

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Four-step (two-phase) technique:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

Dynamic Programming - Summary

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Four-step (two-phase) technique:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

Dynamic Programming - Summary

Elements of DP:

1. Optimal substructure:
the optimal solution to the problem contains optimal solutions to subprograms \Longrightarrow recursive algorithm

Example: LCS, recursive formulation and tree

Dynamic Programming - Summary

Elements of DP:

1. Optimal substructure:
the optimal solution to the problem contains optimal solutions to subprograms \Longrightarrow recursive algorithm

Example: LCS, recursive formulation and tree
2. Overlapping subproblems:

There are few subproblems in total, and many recurring instances of each. (unlike divide-and-conquer, where subproblems are independent)

Example: LCS has only $m n$ distinct subproblems

Dynamic Programming - Summary

Elements of DP:

1. Optimal substructure:
the optimal solution to the problem contains optimal solutions to subprograms \Longrightarrow recursive algorithm

Example: LCS, recursive formulation and tree
2. Overlapping subproblems:

There are few subproblems in total, and many recurring instances of each. (unlike divide-and-conquer, where subproblems are independent)

Example: LCS has only $m n$ distinct subproblems
3. Memoization:
after computing solutions to subproblems, store in table, subsequent calls do table lookup.

Example: LCS has running time $\Theta(m n)$

