Problem:

Input: n items $\{1, 2, ..., n\}$ Item i is worth v_i and weight w_i Total weight W

Problem:

Input: n items $\{1, 2, ..., n\}$ Item i is worth v_i and weight w_i Total weight W

Output: a subset $S \subseteq \{1, 2, \dots, n\}$ such that

$$\sum_{i \in S} w_i \leq W$$
 and $\sum_{i \in S} v_i$ is maximized

1/10

Problem:

Input: n items $\{1, 2, ..., n\}$ Item i is worth v_i and weight w_i Total weight W

Output: a subset $S \subseteq \{1, 2, ..., n\}$ such that

$$\sum_{i \in S} w_i \leq W$$
 and $\sum_{i \in S} v_i$ is maximized

Equivalently, the problem can be cast as follows:

$$\begin{array}{ll} \max_{x_i \in \{0,1\}} & \displaystyle \sum_{i=1}^n v_i x_i \\ \text{s.t.} & \displaystyle \sum_{i=1}^n w_i x_i \leq W \end{array}$$

Greedy solution strategy: three possible greedy approaches:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- 1. Greedy by highest value v_i
- 2. Greedy by least weight w_i
- 3. Greedy by largest value density $\frac{v_i}{w_i}$

Greedy solution strategy: three possible greedy approaches:

- 1. Greedy by highest value v_i
- 2. Greedy by least weight w_i
- 3. Greedy by largest value density $\frac{v_i}{w_i}$

All three appraches generate feasible solutions. However, cannot guarantee to always generate an optimal solution!

Example 1:

i	v_i	w_i	v_i/w_i							
1	6	1	6							
2	10	2	5							
3	12	3	4							
То	Total weight $W = 5$									

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

3/10

Greedy by value density v_i/w_i :

- take items 1 and 2.
- value = 16, weight = 3

Example 1:

i	v_i	w_i	v_i/w_i					
1	6	1	6					
2	10	2	5					
3	12	3	4					
Total weight $W = 5$								

3/10

Greedy by value density v_i/w_i :

- take items 1 and 2.
- value = 16, weight = 3

Optimal solution - by inspection

- take items 2 and 3.
- value = 22, weight = 5

The knapsack problem exhibits the optimal substructure property:

The knapsack problem exhibits the optimal substructure property:

Let i_k be the highest-numberd item in an optimal solution $S = \{i_1, \ldots, i_{k-1}, i_k\}$, Then

1. $S' = S - \{i_k\}$ is an optimal solution for weight $W - w_{i_k}$ and items $\{i_1, \ldots, i_{k-1}\}$

The knapsack problem exhibits the optimal substructure property:

Let i_k be the highest-numberd item in an optimal solution $S = \{i_1, \ldots, i_{k-1}, i_k\}$, Then

1. $S' = S - \{i_k\}$ is an optimal solution for weight $W - w_{i_k}$ and items $\{i_1, \ldots, i_{k-1}\}$

2. the value of the solution S is

 v_{i_k} + the value of the subproblem solution S'

▶ Define c[i, w] = value of an optimal solution for items $\{1, ..., i\}$ and maximum weight w.

▶ Define c[i, w] = value of an optimal solution for items {1,...,i} and maximum weight w.

- Then we have the following two cases for the item i > 0:
 - ► Case 1 (w_i > w): the weight of item i is larger than the weight limit w, then item i cannot be included, and

$$c[i,w] = c[i-1,w]$$

▶ Define c[i, w] = value of an optimal solution for items {1,...,i} and maximum weight w.

- Then we have the following two cases for the item i > 0:
 - Case 1 ($w_i > w$): the weight of item i is larger than the weight limit w, then item i cannot be included, and

$$c[i,w] = c[i-1,w]$$

- Case 2 $(w_i \leq w)$: we have two choices:
 - choice 1: includes item i, in which case it is v_i plus a subproblem solution for i - 1 items and the weight excluding w_i.
 - choice 2: does not include item i, in which case it is a subproblem solution of i - 1 items and the same weight.

▶ Define c[i, w] = value of an optimal solution for items {1,...,i} and maximum weight w.

- Then we have the following two cases for the item i > 0:
 - ► Case 1 (w_i > w): the weight of item i is larger than the weight limit w, then item i cannot be included, and

$$\boldsymbol{c}[i,w] = \boldsymbol{c}[i-1,w]$$

- Case 2 ($w_i \leq w$): we have two choices:
 - choice 1: includes item i, in which case it is v_i plus a subproblem solution for i - 1 items and the weight excluding w_i.
 - choice 2: does not include item i, in which case it is a subproblem solution of i - 1 items and the same weight.

The better of these two choices should be made., that is

$$c[i,w] = \max\{\underbrace{v_i + c[i-1,w-w_i]}_{\text{choice 1}}, \underbrace{c[i-1,w]}_{\text{choice 2}}\}$$

<ロト < 団ト < 臣ト < 臣ト 差 の Q () 5/10

► In summary,

$$c[i,w] = \begin{cases} \begin{array}{ll} 0 & \text{if } i = 0 \text{ or } w = 0 \\ c[i-1,w] & \text{if } i > 0 \text{ and } w_i > w \\ \max \left\{ v_i + c[i-1,w-w_i], c[i-1,w] \right\} & \text{if } i > 0 \text{ and } w_i \le w \end{cases}$$

► In summary,

$$c[i,w] = \begin{cases} \begin{array}{ll} 0 & \text{if } i=0 \text{ or } w=0 \\ c[i-1,w] & \text{if } i>0 \text{ and } w_i > w \\ \max\{v_i+c[i-1,w-w_i],c[i-1,w]\} & \text{if } i>0 \text{ and } w_i \leq w \end{cases}$$

• The value of an optimal solution = c[n, W].

In summary,

$$c[i,w] = \left\{ \begin{array}{ll} 0 & \text{if } i=0 \text{ or } w=0 \\ c[i-1,w] & \text{if } i>0 \text{ and } w_i > w \\ \max\{v_i+c[i-1,w-w_i],c[i-1,w]\} & \text{if } i>0 \text{ and } w_i \leq w \end{array} \right.$$

6/10

• The value of an optimal solution = c[n, W].

► The set of items to take can be deduced from the c-table by starting at c[n, W] and tracing where the optimal values came from as follows:

In summary,

$$c[i,w] = \left\{ \begin{array}{ll} 0 & \text{if } i=0 \text{ or } w=0 \\ c[i-1,w] & \text{if } i>0 \text{ and } w_i > w \\ \max\left\{v_i + c[i-1,w-w_i], c[i-1,w]\right\} & \text{if } i>0 \text{ and } w_i \le w \end{array} \right.$$

• The value of an optimal solution = c[n, W].

- ▶ The set of items to take can be deduced from the *c*-table by starting at *c*[*n*, *W*] and tracing where the optimal values came from as follows:
 - ► If c[i, w] = c[i 1, w], item i is not part of the solution, and we continue tracing with c[i 1, w].

In summary,

$$c[i,w] = \left\{ \begin{array}{ll} 0 & \text{if } i=0 \text{ or } w=0 \\ c[i-1,w] & \text{if } i>0 \text{ and } w_i > w \\ \max\{v_i+c[i-1,w-w_i],c[i-1,w]\} & \text{if } i>0 \text{ and } w_i \leq w \end{array} \right.$$

• The value of an optimal solution = c[n, W].

- ▶ The set of items to take can be deduced from the *c*-table by starting at *c*[*n*, *W*] and tracing where the optimal values came from as follows:
 - ► If c[i, w] = c[i 1, w], item i is not part of the solution, and we continue tracing with c[i 1, w].
 - If c[i, w] ≠ c[i − 1, w], item i is part of the solution, and we continue tracing with c[i − 1, w − w_i].

・ロン ・四 と ・ ヨ と ・ ヨ ・

In summary,

$$c[i,w] = \begin{cases} \begin{array}{ll} 0 & \text{if } i=0 \text{ or } w=0 \\ c[i-1,w] & \text{if } i>0 \text{ and } w_i > w \\ \max\{v_i+c[i-1,w-w_i],c[i-1,w]\} & \text{if } i>0 \text{ and } w_i \leq w \end{cases}$$

• The value of an optimal solution = c[n, W].

- ▶ The set of items to take can be deduced from the *c*-table by starting at *c*[*n*, *W*] and tracing where the optimal values came from as follows:
 - ► If c[i, w] = c[i 1, w], item i is not part of the solution, and we continue tracing with c[i 1, w].
 - If c[i, w] ≠ c[i − 1, w], item i is part of the solution, and we continue tracing with c[i − 1, w − w_i].
- Running time: $\Theta(nW)$:
 - ▶ $\Theta(nW)$ to fill in the c table (n+1)(W+1) entries each requiring $\Theta(1)$ time
 - ▶ O(n) time to trace the solution starts in row n and moves up 1 row at each step.

Example 1:

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4
То	tal w	eight	W = 5

By dynamic programming, we generate the following c-table:

$i \backslash w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3	0	6	10	16	18	22

Example 1:

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4
То	tal w	eight	W = 5

By dynamic programming, we generate the following c-table:

$i \backslash w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3	0	6	10	16	18	22

By the table, we have

- Optimal value = c[3, 5] = 22.
- The optimal solution (the items to take): $S = \{3, 2\}$

Example 2: We have n = 9 items with

- ▶ value = v = [2, 3, 3, 4, 4, 5, 7, 8, 8]
- weight = w = [3, 5, 7, 4, 3, 9, 2, 11, 5];
- Total allowable weight W = 15

Example 2: We have n = 9 items with

- ▶ value = v = [2, 3, 3, 4, 4, 5, 7, 8, 8]
- weight = w = [3, 5, 7, 4, 3, 9, 2, 11, 5];
- Total allowable weight W = 15

DP generates the following c-table:

i/w	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2
2	0	0	0	2	2	3	3	3	5	5	5	5	5	5	5	5
3	0	0	0	2	2	3	3	3	5	5	5	5	6	6	6	8
4	0	0	0	2	4	4	4	6	6	7	7	7	9	9	9	9
5	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
6	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
7	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
8	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
9	0	0	7	7	7	11	11	15	15	15	19	19	19	21	23	23

Example 2: We have n = 9 items with

- ▶ value = v = [2, 3, 3, 4, 4, 5, 7, 8, 8]
- weight = w = [3, 5, 7, 4, 3, 9, 2, 11, 5];
- Total allowable weight W = 15

DP generates the following c-table:

i/w	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2
2	0	0	0	2	2	3	3	3	5	5	5	5	5	5	5	5
3	0	0	0	2	2	3	3	3	5	5	5	5	6	6	6	8
4	0	0	0	2	4	4	4	6	6	7	7	7	9	9	9	9
5	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
6	0	0	0	4	4	4	6	8	8	8	10	10	11	11	11	13
7	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
8	0	0	7	7	7	11	11	11	13	15	15	15	17	17	18	18
9	0	0	7	7	7	11	11	15	15	15	19	19	19	21	23	23

By the table, we have

- Optimal value = c[9, 15] = 23.
- The set of items to take $S = \{9, 7, 5, 4\}$.

 Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- ► Four-step (two-phase) technique:
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Four-step (two-phase) technique:
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Compute the value of an optimal solution in a bottom-up fashion
 - 4. Construct an optimal solution from computed information

Elements of DP:

1. Optimal substructure:

the optimal solution to the problem contains optimal solutions to subprograms \implies recursive algorithm

Example: LCS, recursive formulation and tree

Elements of DP:

1. Optimal substructure:

the optimal solution to the problem contains optimal solutions to subprograms \implies recursive algorithm

Example: LCS, recursive formulation and tree

2. Overlapping subproblems:

There are few subproblems in total, and many recurring instances of each. *(unlike divide-and-conquer, where subproblems are independent)*

Example: LCS has only mn distinct subproblems

Elements of DP:

1. Optimal substructure:

the optimal solution to the problem contains optimal solutions to subprograms \implies recursive algorithm

Example: LCS, recursive formulation and tree

2. Overlapping subproblems:

There are few subproblems in total, and many recurring instances of each. *(unlike divide-and-conquer, where subproblems are independent)*

Example: LCS has only mn distinct subproblems

3. Memoization:

after computing solutions to subproblems, store in table, subsequent calls do table lookup.

Example: LCS has running time $\Theta(mn)$