0-1 knapsack problem revisited

Problem:
Input: n items {1,2,...,n}
Item i is worth v; and weight w;
Total weight W

1/10

0-1 knapsack problem revisited

Problem:
Input: n items {1,2,...,n}
Item i is worth v; and weight w;
Total weight W

Output: a subset S C {1,2,...,n} such that

Zwi <W and Zvi is maximized
i€s i€S

1/10

0-1 knapsack problem revisited

Problem:
Input: n items {1,2,...,n}
Item i is worth v; and weight w;
Total weight W

Output: a subset S C {1,2,...,n} such that

Zwi <W and Zvi is maximized
i€s i€S

Equivalently, the problem can be cast as follows:

n

MaXz,;e{0,1} E V&

i=1

n
s.t. Zwixi <Ww
=1

1/10

0-1 knapsack problem revisited

Greedy solution strategy: three possible greedy approaches:

1. Greedy by highest value v;

2. Greedy by least weight w;

3. Greedy by largest value density Y
"

2

2/10

0-1 knapsack problem revisited

Greedy solution strategy: three possible greedy approaches:

1. Greedy by highest value v;

2. Greedy by least weight w;

3. Greedy by largest value density Y
Wi

2

All three appraches generate feasible solutions. However, cannot guarantee
to always generate an optimal solution!

2/10

0-1 knapsack problem revisited

Example 1:

/) ‘ (o Ww; vi/wi
1|6 1 6
2110 2 5
3112 3 4

Total weight W =5

Greedy by value density v; /w;:

> take items 1 and 2.

> value = 16, weight = 3

3/10

0-1 knapsack problem revisited

Example 1:

/) ‘ (o Ww; vi/wi
1|6 1 6
2110 2 5
3112 3 4

Total weight W =5

Greedy by value density v; /w;:

> take items 1 and 2.

> value = 16, weight = 3

Optimal solution — by inspection

> take items 2 and 3.

> value = 22, weight =5

3/10

0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

Let iy, be the highest-numberd item in an optimal solution
S = {il, “en 7ik—1yik}r Then

1. 8" =S —{iy} is an optimal solution for weight W — w;, and
items {iy,...,ix—1}

4/10

0-1 knapsack problem revisited

The knapsack problem exhibits the optimal substructure property:

Let iy, be the highest-numberd item in an optimal solution
S = {il, “en 7ik—1yik}r Then

1. 8" =S —{iy} is an optimal solution for weight W — w;, and
items {iy,...,ix—1}

2. the value of the solution S is

v;,, + the value of the subproblem solution S’

4/10

0-1 knapsack problem revisited
» Define

c[i, w] = value of an optimal solution for items {1,... i}
and maximum weight w.

5/10

0-1 knapsack problem revisited

> Define
c[i, w] = value of an optimal solution for items {1,... i}
and maximum weight w.

» Then we have the following two cases for the item i > 0:

» Case 1 (w; > w): the weight of item 7 is larger than the weight limit
w, then item 7 cannot be included, and

cli, w] = ¢cfi — 1, w]

0-1 knapsack problem revisited

» Define

c[i, w] = value of an optimal solution for items {1,... i}

and maximum weight w.

» Then we have the following two cases for the item i > 0:

» Case 1 (w; > w): the weight of item 7 is larger than the weight limit
w, then item 7 cannot be included, and

cli, w] = ¢cfi — 1, w]

» Case 2 (w; < w): we have two choices:

>

choice 1: includes item 4, in which case it is v; plus a subproblem
solution for ¢ — 1 items and the weight excluding w;.

choice 2: does not include item %, in which case it is a subproblem
solution of ¢ — 1 items and the same weight.

0-1 knapsack problem revisited

> Define
c[i, w] = value of an optimal solution for items {1,... i}
and maximum weight w.

» Then we have the following two cases for the item i > 0:

» Case 1 (w; > w): the weight of item 7 is larger than the weight limit
w, then item 7 cannot be included, and

cli, w] = ¢cfi — 1, w]

» Case 2 (w; < w): we have two choices:

> choice 1: includes item 4, in which case it is v; plus a subproblem
solution for ¢ — 1 items and the weight excluding w;.

> choice 2: does not include item %, in which case it is a subproblem
solution of ¢ — 1 items and the same weight.

The better of these two choices should be made., that is

cli,w] = max{v; + c[i — 1, w — w;], c[i — 1,w]}
—_———

choice 1 choice 2

0-1 knapsack problem revisited

> |n summary,

0 if i=00rw=0
cli,w] =14 i —1,w] if ¢>0andw; >w
max {v; + c[i — L, w —w;],cfi — 1,w]} if i>0andw; <w

6/10

0-1 knapsack problem revisited

> |n summary,

0 if i=00rw=0
cli,w] =14 i —1,w] if ¢>0andw; >w
max {v; + c[i — L, w —w;],cfi — 1,w]} if i>0andw; <w

> The value of an optimal solution = ¢[n, W].

6/10

0-1 knapsack problem revisited

> |n summary,
0 if i=00rw=0
cli,w] =14 i —1,w] if ¢>0andw; >w
max {v; + c[i — L, w —w;],cfi — 1,w]} if i>0andw; <w

> The value of an optimal solution = ¢[n, W].

> The set of items to take can be deduced from the c-table by starting
at ¢[n, W] and tracing where the optimal values came from as follows:

6

0-1 knapsack problem revisited

> |n summary,

0 if i=00rw=0
cli,w] =14 i —1,w] if ¢>0andw; >w
max {v; + c[i — L, w —w;],cfi — 1,w]} if i>0andw; <w

> The value of an optimal solution = ¢[n, W].

> The set of items to take can be deduced from the c-table by starting
at ¢[n, W] and tracing where the optimal values came from as follows:

> If c[i,w] = c[i — 1,w], item 7 is not part of the solution, and we
continue tracing with ¢[i — 1, w].

6

0-1 knapsack problem revisited

> |n summary,

0 if i=00rw=0
cli,w] =14 i —1,w] if ¢>0andw; >w
max {v; + c[i — L, w —w;],cfi — 1,w]} if i>0andw; <w

> The value of an optimal solution = ¢[n, W].

> The set of items to take can be deduced from the c-table by starting
at ¢[n, W] and tracing where the optimal values came from as follows:

> If c[i,w] = c[i — 1,w], item 7 is not part of the solution, and we
continue tracing with ¢[i — 1, w].

> If cfi,w] # c[i — 1,w], item 7 is part of the solution, and we continue
tracing with c[i — 1, w — w;].

6

0-1 knapsack problem revisited

> |n summary,

0 if i=00rw=0
cli,w] =14 i —1,w] if ¢>0andw; >w
max {v; + c[i — L, w —w;],cfi — 1,w]} if i>0andw; <w

> The value of an optimal solution = ¢[n, W].

> The set of items to take can be deduced from the c-table by starting
at ¢[n, W] and tracing where the optimal values came from as follows:

> If c[i,w] = c[i — 1,w], item 7 is not part of the solution, and we
continue tracing with ¢[i — 1, w].

> If c[i,w] # c[i — 1,w], item i is part of the solution, and we continue
tracing with c[i — 1, w — w;].

> Running time: ©(nW):
» O(nW) to fill in the c table
(n+ 1)(W + 1) entries each requiring ©(1) time
» O(n) time to trace the solution
starts in row n and moves up 1 row at each step.

6

0-1 knapsack problem revisited

Example 1:
/) ‘ (o Ww; vi/wi
116 1 6
2110 2 5
3112 3 4

Total weight W =5

By dynamic programming, we generate the following c-table:

0

3 4 5
0 0 O
6 6 6
10 16 16 16
10 16 18 22

2
0
6

o O O OO
OOy Ol =

1
2
3

0-1 knapsack problem revisited

Example 1:
7 ‘ (o Ww; vi/wi
116 1 6
2110 2 5
3112 3 4

Total weight W =5

By dynamic programming, we generate the following c-table:

i\w |0 1 2 3 4 5
0/00 0 0 0 ©
1 /06 6 6 6 6
2 |0 6 10 16 16 16
310 6 10 16 18 22

By the table, we have
» Optimal value = ¢[3, 5] = 22.
> The optimal solution (the items to take): S = {3,2}

0-1 knapsack problem revisited

Example 2: We have n =9 items with
> value=v=12,3,3,4,4,5,7, 8, 8
> weight=w=13,5,7,4, 3,9, 2, 11, 5];
» Total allowable weight W = 15

8/10

0-1 knapsack problem revisited

Example 2: We have n =9 items with

> value=v=12,3,3,4,4,5,7, 8, 8
> weight =w =[3, 5, 7,4, 3, 9, 2, 11, 5];

» Total allowable weight W = 15

DP generates the following c-table:

[i/w o[1 [2]3]47] 5 6 [7 8 9 [10 [11 [12 [13 [14 [15
0 0 JO0J]O0TJoO 0 0 0 0 0 0 0 0 0 0 0 0
1 0002 2 2 2 2 2 2 2 2 2 2 2 2
2 0 |00 |2 2 3 3 3 5 5 5 5 5 5 5 5
3 0 [0 0|2 2 3 3 3 5 5 5 5 6 6 6 8
1 0 |00 |2 4 4 4 6 6 7 7 7 9 9 9 9
5 0 [0 o0 4] 4 4 6 8 8 8 10 10 11 11 11 13
6 0 [0 |0 4] 4 4 6 8 8 8 10 10 11 11 11 13
7 0 [0 |7 [7 7 11 11 11 13 15 15 5 17 17 18 18
8 0 [0 |7 [7 7 11 11 11 13 15 15 15 17 17 18 18
9 0 |0 | 7 7 7 11 11 15 15 15 19 19 19 21 23 23

8

10

0-1 knapsack problem revisited

Example 2: We have n =9 items with
> value=v=12,3,3,4,4,5,7, 8, 8
> weight=w=13,5,7,4, 3,9, 2, 11, 5];
» Total allowable weight W = 15

DP generates the following c-table:

[i/w o] 1 [2345 [6 [7 [8 [9 [10 [1l [12] 13 [14 [15 |
0 0 JO0J]O0TJoO 0 0 0 0 0 0 0 0 0 0 0 0
1 0002 2 2 2 2 2 2 2 2 2 2 2 2
2 0 |00 |2 2 3 3 3 5 5 5 5 5 5 5 5
3 0 [0 0|2 2 3 3 3 5 5 5 5 6 6 6 8
1 0 |00 |2 4 4 4 6 6 7 7 7 9 9 9 9
5 0 [0 o0 4] 4 4 6 8 8 8 10 10 11 11 11 13
6 0 [0 |0 4] 4 4 6 8 8 8 10 10 11 11 11 13
7 0 [0 |7 [7 7 11 11 11 13 15 15 5 17 17 18 18
8 0 [0 |7 [7 7 11 11 11 13 15 15 15 17 17 18 18
9 0 |0 | 7 7 7 11 11 15 15 15 19 19 19 21 23 23

By the table, we have
» Optimal value = ¢[9, 15] = 23.
> The set of items to take S = {9,7,5,4}.

Dynamic Programming — Summary

» Not a specific algorithm, but a technique
(like Divide-and-Conquer and Greedy algorithms)

9/10

Dynamic Programming — Summary

» Not a specific algorithm, but a technique
(like Divide-and-Conquer and Greedy algorithms)

» Four-step (two-phase) technique:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

9/10

Dynamic Programming — Summary

» Not a specific algorithm, but a technique
(like Divide-and-Conquer and Greedy algorithms)

» Four-step (two-phase) technique:

AW M

Characterize the structure of an optimal solution
Recursively define the value of an optimal solution

Compute the value of an optimal solution in a bottom-up fashion
Construct an optimal solution from computed information

Dynamic Programming — Summary

Elements of DP:

1. Optimal substructure:

the optimal solution to the problem contains optimal
solutions to subprograms = recursive algorithm

Example: LCS, recursive formulation and tree

10/10

Dynamic Programming — Summary

Elements of DP:

1. Optimal substructure:

the optimal solution to the problem contains optimal
solutions to subprograms = recursive algorithm

Example: LCS, recursive formulation and tree

2. Overlapping subproblems:

There are few subproblems in total, and many recurring
instances of each. (unlike divide-and-conquer, where
subproblems are independent)

Example: LCS has only mn distinct subproblems

10/10

Dynamic Programming — Summary

Elements of DP:

1. Optimal substructure:

the optimal solution to the problem contains optimal
solutions to subprograms = recursive algorithm

Example: LCS, recursive formulation and tree

2. Overlapping subproblems:

There are few subproblems in total, and many recurring
instances of each. (unlike divide-and-conquer, where
subproblems are independent)

Example: LCS has only mn distinct subproblems

3. Memoization:
after computing solutions to subproblems, store in table,
subsequent calls do table lookup.

Example: LCS has running time @(mn)

10

10

