Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

Longest Common Subsequence (LCS) - DP case study 3

Problem statement:

Longest Common Subsequence (LCS) - DP case study 3

Problem statement:
Input: Sequences

$$
\begin{aligned}
X_{m} & =\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\rangle \\
Y_{n} & =\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle
\end{aligned}
$$

Longest Common Subsequence (LCS) - DP case study 3

Problem statement:
Input: Sequences

$$
\begin{aligned}
X_{m} & =\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\rangle \\
Y_{n} & =\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle
\end{aligned}
$$

Output: longest common subsequence (LCS) of X_{m} and Y_{n}

Terminology

1. Sequence, e.g.

- $X_{7}=\langle A, B, C, B, D, A, B\rangle$
- ALGORITHM

LCS

Terminology

1. Sequence, e.g.

- $X_{7}=\langle A, B, C, B, D, A, B\rangle$
- ALGORITHM

2. Subsequence, e.g.

- $\langle A, C, D, B\rangle$ is a subsequence of X
- ART is a subsequence algorithm

LCS

Terminology

1. Sequence, e.g.

- $X_{7}=\langle A, B, C, B, D, A, B\rangle$
- ALGORITHM

2. Subsequence, e.g.

- $\langle A, C, D, B\rangle$ is a subsequence of X
- art is a subsequence algorithm

3. Common subsequence, e.g.

- Given $X_{7}=\langle A, B, C, B, D, A, B\rangle$ $Y_{6}=\langle B, D, C, A, B, A\rangle$
- $Z_{3}=\langle B, C, A\rangle$ is a common subsequence of X_{7} and Y_{6}
- $Z_{4}=\langle B, C, B, A\rangle$ is also a common subsequence of X_{7} and Y_{6}

LCS

Terminology

1. Sequence, e.g.

- $X_{7}=\langle A, B, C, B, D, A, B\rangle$
- ALGORITHM

2. Subsequence, e.g.

- $\langle A, C, D, B\rangle$ is a subsequence of X
- ART is a subsequence ALGORITHM

3. Common subsequence, e.g.

- Given $X_{7}=\langle A, B, C, B, D, A, B\rangle$ $Y_{6}=\langle B, D, C, A, B, A\rangle$
- $Z_{3}=\langle B, C, A\rangle$ is a common subsequence of X_{7} and Y_{6}
- $Z_{4}=\langle B, C, B, A\rangle$ is also a common subsequence of X_{7} and Y_{6}

4. Longest common subsequence (LCS), e.g.

- Z_{4} is a longest common subsequence (LCS) of X_{7} and Y_{6}
- LCS is not unique, $\langle B, C, A, B\rangle$ is also a LCS.

LCS

A brute-force solution:

- For every subsequence of X_{m}, check if it is a subsequence of Y_{n}.

LCS

A brute-force solution:

- For every subsequence of X_{m}, check if it is a subsequence of Y_{n}.
- Running time: $\Theta\left(n \cdot 2^{m}\right)$
- Intractable!

LCS

DP - step 1: characterize the structure of an optimal solution

LCS

DP - step 1: characterize the structure of an optimal solution
Let $Z_{k}=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of

$$
X_{m}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \quad \text { and } \quad Y_{n}=\left\langle y_{1}, \ldots, y_{n}\right\rangle
$$

Then

DP - step 1: characterize the structure of an optimal solution
Let $Z_{k}=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of

$$
X_{m}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \quad \text { and } \quad Y_{n}=\left\langle y_{1}, \ldots, y_{n}\right\rangle
$$

Then

- Case 1. If $x_{m}=y_{n}$, then
(a) $z_{k}=x_{m}=y_{n}$
(b) $Z_{k-1}=\left\langle z_{1}, z_{2}, \ldots, z_{k-1}\right\rangle=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$

DP - step 1: characterize the structure of an optimal solution
Let $Z_{k}=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of

$$
X_{m}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \quad \text { and } \quad Y_{n}=\left\langle y_{1}, \ldots, y_{n}\right\rangle
$$

Then

- Case 1. If $x_{m}=y_{n}$, then
(a) $z_{k}=x_{m}=y_{n}$
(b) $Z_{k-1}=\left\langle z_{1}, z_{2}, \ldots, z_{k-1}\right\rangle=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$
- Case 2. If $x_{m} \neq y_{n}$, then
(a) $z_{k} \neq x_{m} \Longrightarrow Z_{k}=\operatorname{LCS}\left(X_{m-1}, Y_{n}\right)$
(b) $z_{k} \neq y_{n} \Longrightarrow Z_{k}=\operatorname{LCS}\left(X_{m}, Y_{n-1}\right)$

DP - step 1: characterize the structure of an optimal solution
Let $Z_{k}=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of

$$
X_{m}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \quad \text { and } \quad Y_{n}=\left\langle y_{1}, \ldots, y_{n}\right\rangle
$$

Then

- Case 1. If $x_{m}=y_{n}$, then
(a) $z_{k}=x_{m}=y_{n}$
(b) $Z_{k-1}=\left\langle z_{1}, z_{2}, \ldots, z_{k-1}\right\rangle=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$
- Case 2. If $x_{m} \neq y_{n}$, then
(a) $z_{k} \neq x_{m} \Longrightarrow Z_{k}=\operatorname{LCS}\left(X_{m-1}, Y_{n}\right)$
(b) $z_{k} \neq y_{n} \Longrightarrow Z_{k}=\operatorname{LCS}\left(X_{m}, Y_{n-1}\right)$

In words, the optimal solution to the (whole) problem contains within it the otpimal solutions to subproblems

DP - step 1: characterize the structure of an optimal solution
Let $Z_{k}=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ be any LCS of

$$
X_{m}=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \quad \text { and } \quad Y_{n}=\left\langle y_{1}, \ldots, y_{n}\right\rangle
$$

Then

- Case 1. If $x_{m}=y_{n}$, then
(a) $z_{k}=x_{m}=y_{n}$
(b) $Z_{k-1}=\left\langle z_{1}, z_{2}, \ldots, z_{k-1}\right\rangle=\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$
- Case 2. If $x_{m} \neq y_{n}$, then
(a) $z_{k} \neq x_{m} \Longrightarrow Z_{k}=\operatorname{LCS}\left(X_{m-1}, Y_{n}\right)$
(b) $z_{k} \neq y_{n} \Longrightarrow Z_{k}=\operatorname{LCS}\left(X_{m}, Y_{n-1}\right)$

In words, the optimal solution to the (whole) problem contains within it the otpimal solutions to subproblems $=$ the optimal substructure property

DP - step 2: recursively define the value of an optimal solution

LCS

DP - step 2: recursively define the value of an optimal solution

- Define

$$
c[i, j]=\text { length of } \operatorname{LCS}\left(X_{i}, Y_{j}\right)
$$

DP - step 2: recursively define the value of an optimal solution

- Define

$$
c[i, j]=\text { length of } \operatorname{LCS}\left(X_{i}, Y_{j}\right)
$$

- $c[m, n]=$ length of $\operatorname{LCS}\left(X_{m}, Y_{n}\right)$

DP - step 2: recursively define the value of an optimal solution

- Define

$$
c[i, j]=\text { length of } \operatorname{LCS}\left(X_{i}, Y_{j}\right)
$$

- $c[m, n]=$ length of $\operatorname{LCS}\left(X_{m}, Y_{n}\right)$
- $c[i, 0]=c[0, j]=0$ for initialization

DP - step 2: recursively define the value of an optimal solution

- Define

$$
c[i, j]=\text { length of } \operatorname{LCS}\left(X_{i}, Y_{j}\right)
$$

- $c[m, n]=$ length of $\operatorname{LCS}\left(X_{m}, Y_{n}\right)$
- $c[i, 0]=c[0, j]=0$ for initialization
- By Case 1 of the optimal structure property: if $x_{i}=y_{j}$, then

$$
\begin{aligned}
& \text { (a) } z_{\ell}=x_{i}=y_{j} \\
& \text { (b) } Z_{\ell-1}=\left\langle z_{1}, z_{2}, \ldots, z_{\ell-1}\right\rangle=\operatorname{LCS}\left(X_{i-1}, Y_{j-1}\right)
\end{aligned}
$$

DP - step 2: recursively define the value of an optimal solution

- Define

$$
c[i, j]=\text { length of } \operatorname{LCS}\left(X_{i}, Y_{j}\right)
$$

- $c[m, n]=$ length $\operatorname{of} \operatorname{LCS}\left(X_{m}, Y_{n}\right)$
- $c[i, 0]=c[0, j]=0$ for initialization
- By Case 1 of the optimal structure property: if $x_{i}=y_{j}$, then

$$
\begin{aligned}
& \text { (a) } z_{\ell}=x_{i}=y_{j} \\
& \text { (b) } Z_{\ell-1}=\left\langle z_{1}, z_{2}, \ldots, z_{\ell-1}\right\rangle=\operatorname{LCS}\left(X_{i-1}, Y_{j-1}\right)
\end{aligned}
$$

we have

$$
c[i, j]=c[i-1, j-1]+1
$$

DP - step 2: recursively define the value of an optimal solution

- Define

$$
c[i, j]=\text { length of } \operatorname{LCS}\left(X_{i}, Y_{j}\right)
$$

- $c[m, n]=$ length of $\operatorname{LCS}\left(X_{m}, Y_{n}\right)$
- $c[i, 0]=c[0, j]=0$ for initialization
- By Case 1 of the optimal structure property: if $x_{i}=y_{j}$, then

$$
\begin{aligned}
& \text { (a) } z_{\ell}=x_{i}=y_{j} \\
& \text { (b) } Z_{\ell-1}=\left\langle z_{1}, z_{2}, \ldots, z_{\ell-1}\right\rangle=\operatorname{LCS}\left(X_{i-1}, Y_{j-1}\right)
\end{aligned}
$$

we have

$$
c[i, j]=c[i-1, j-1]+1
$$

- By Case 2 of the optimal structure property: if $x_{i} \neq y_{j}$, then

$$
\begin{aligned}
& \text { (a) } z_{\ell} \neq x_{i} \Longrightarrow Z_{\ell}=\operatorname{LCS}\left(X_{i-1}, Y_{j}\right) \\
& \text { (b) } z_{\ell} \neq y_{j} \Longrightarrow Z_{\ell}=\operatorname{LCS}\left(X_{i}, Y_{j-1}\right)
\end{aligned}
$$

DP - step 2: recursively define the value of an optimal solution

- Define

$$
c[i, j]=\text { length of } \operatorname{LCS}\left(X_{i}, Y_{j}\right)
$$

- $c[m, n]=$ length of $\operatorname{LCS}\left(X_{m}, Y_{n}\right)$
- $c[i, 0]=c[0, j]=0$ for initialization
- By Case 1 of the optimal structure property: if $x_{i}=y_{j}$, then

$$
\begin{aligned}
& \text { (a) } z_{\ell}=x_{i}=y_{j} \\
& \text { (b) } Z_{\ell-1}=\left\langle z_{1}, z_{2}, \ldots, z_{\ell-1}\right\rangle=\operatorname{LCS}\left(X_{i-1}, Y_{j-1}\right)
\end{aligned}
$$

we have

$$
c[i, j]=c[i-1, j-1]+1
$$

- By Case 2 of the optimal structure property: if $x_{i} \neq y_{j}$, then

$$
\begin{aligned}
& \text { (a) } z_{\ell} \neq x_{i} \Longrightarrow Z_{\ell}=\operatorname{LCS}\left(X_{i-1}, Y_{j}\right) \\
& \text { (b) } z_{\ell} \neq y_{j} \Longrightarrow Z_{\ell}=\operatorname{LCS}\left(X_{i}, Y_{j-1}\right)
\end{aligned}
$$

we have

$$
c[i, j]=\max \{c[i, j-1], c[i-1, j]\}
$$

LCS

- In summary,

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \text { (initials) } \\ c[i-1, j-1]+1 & \text { if } x[i]=y[j] \quad \text { (Case 1) } \\ \max \{c[i, j-1], c[i-1, j]\} & \text { if } x[i] \neq y[j] \quad \text { (Case 2) }\end{cases}
$$

LCS

- In summary,

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \text { (initials) } \\ c[i-1, j-1]+1 & \text { if } x[i]=y[j] \quad \text { (Case 1) } \\ \max \{c[i, j-1], c[i-1, j]\} & \text { if } x[i] \neq y[j] \quad \text { (Case 2) }\end{cases}
$$

- Meanwhile, create $b[i, j]$ to record the optimal subproblem solution chosen when computing $c[i, j]$

LCS

DP - step 3: compute $c[i, j]$ (and $b[i, j]$) in a bottom-up approach

- Compute $c[i, j]$ and $b[i, j]$ in a bottom-up approach.
- $c[i, j]$ is the length of $\operatorname{LCS}\left(X_{i}, Y_{j}\right)$
- $b[i, j]$ shows how to construct the corresponding $\operatorname{LCS}\left(X_{i}, Y_{j}\right)$

DP - step 3: compute $c[i, j]$ (and $b[i, j]$) in a bottom-up approach

- Compute $c[i, j]$ and $b[i, j]$ in a bottom-up approach.
- $c[i, j]$ is the length of $\operatorname{LCS}\left(X_{i}, Y_{j}\right)$
- $b[i, j]$ shows how to construct the corresponding $\operatorname{LCS}\left(X_{i}, Y_{j}\right)$
- Cost:
- Running time: $\Theta(m n)$
- Space: $\Theta(m n)$

```
LCS-length (X,Y)
set \(c[i, 0]=0\) and \(c[0, j]=0\)
for i = 1 to m // Row-major order to compute \(c\) and b arrays
    for \(j=1\) to \(n\)
        if \(X(i)=Y(j)\)
            \(c[i, j]=c[i-1, j-1]+1\)
            b[i,j] = 'Diag' // go to up diagonal
            elseif c[i-1,j] >= c[i,j-1]
            \(c[i, j]=c[i-1, j]\)
            b[i,j] = 'Up' // go up
            else
            \(c[i, j]=c[i, j-1]\)
            \(b[i, j]=\) 'Left'
                            // go left
            endif
    endfor
endfor
return \(c\) and b
```

DP - step 4: construct an optimal solution from computed information

LCS

Example: $X_{7}=\langle A, B, C, B, D, A, B\rangle$ and $Y_{6}=\langle B, D, C, A, B, A\rangle$

LCS

Example: $X_{7}=\langle A, B, C, B, D, A, B\rangle$ and $Y_{6}=\langle B, D, C, A, B, A\rangle$ $c[\cdot, \cdot]+b[\cdot, \cdot]:$

	j	0	1	2	3	4	5	6
i		y_{j}	B	D	C	A	B	A
0	x_{i}	0	0	0	0	0	0	0
1	A	0	\uparrow	\uparrow 0	\uparrow 0	\nwarrow_{1}	$\leftarrow 1$	\1
2	B	0		$\leftarrow 1$	$\leftarrow 1$	\uparrow	\nwarrow_{2}	$\leftarrow 2$
3	C	0	\uparrow	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	\uparrow	个
4	B	0		\uparrow	\uparrow		3	$\leftarrow 3$
5	D	0	\uparrow	\nwarrow_{2}	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 3 \end{aligned}$	¢ 3
6	A	0	\uparrow	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	\uparrow	\nwarrow_{3}	¢ 3	4
7	B	0		\uparrow 2	\uparrow	\uparrow	\nwarrow_{4}	\uparrow 4

LCS

Example: $X_{7}=\langle A, B, C, B, D, A, B\rangle$ and $Y_{6}=\langle B, D, C, A, B, A\rangle$
$c[\cdot, \cdot]+b[\cdot, \cdot]:$

	j	0	1	2	3	4	5	6
i		y_{j}	B	D	C	A	B	A
0	x_{i}	0	0	0	0	0	0	0
1	A	0	\uparrow	\uparrow 0	\uparrow	\nwarrow_{1}	$\leftarrow 1$	\nwarrow_{1}
2	B	0		$\leftarrow 1$	$\leftarrow 1$	\uparrow	\nwarrow_{2}	$\leftarrow 2$
3	C	0	\uparrow	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	\uparrow	\uparrow
4	B	0		\uparrow	\uparrow		3	$\leftarrow 3$
5	D	0	\uparrow	\nwarrow_{2}	\uparrow	$\begin{aligned} & \uparrow \\ & \uparrow \\ & 2 \end{aligned}$	$\begin{aligned} & \uparrow \\ & 3 \end{aligned}$	¢ 3
6	A	0	\uparrow	\uparrow	\uparrow	\nwarrow_{3}	¢ 3	4
7	B	0		$\begin{aligned} & \uparrow \\ & \uparrow \\ & \hline \end{aligned}$	\uparrow	\uparrow	\nwarrow_{4}	\uparrow

(1) Length of LCS $=c[7,6]=4$
(2) By the b-table (" $\uparrow, \leftarrow, \nwarrow$ "), the LCS is $B C B A$

