Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G=(V, E, w)$

Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G=(V, E, w)$
- Weight function $w: E \longrightarrow \mathbf{R}$

Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G=(V, E, w)$
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices

Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G=(V, E, w)$
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G=(V, E, w)$
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

- Minimum Spanning Tree (MST) T

$$
w(T)=\sum_{(u, v) \in T} w(u, v) \quad \text { is minimized }
$$

Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G=(V, E, w)$
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

- Minimum Spanning Tree (MST) T

$$
w(T)=\sum_{(u, v) \in T} w(u, v) \quad \text { is minimized }
$$

Example: $w(T)=37$.

Minimum Spanning Tree (MST)

- Undirected connected weighted graph $G=(V, E, w)$
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

- Minimum Spanning Tree (MST) T

$$
w(T)=\sum_{(u, v) \in T} w(u, v) \quad \text { is minimized }
$$

Example: $w(T)=37$.

- MST is not necessarily unique.

For simplicity in theory, assume all edge weight distinct, and therefore, has a unique MST.

MST

Basic idea of computing ("growing") a MST:

- construct the MST by successively select edges to include in the tree

MST

Basic idea of computing ("growing") a MST:

- construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

MST

Basic idea of computing ("growing") a MST:

- construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding

MST

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.
${ }^{1}$ The subgraph G_{1} is induced by vertices in T_{1}, i.e., $V_{1}=\left\{\right.$ vertices in $\left.T_{1}\right\}$ and $E_{1}=\left\{(x, y) \in E ; x, y \in V_{1}\right\}$. Similarly for G_{2}.

MST

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of $G=(V, E)$. Removing (u, v) of T partitions T into two trees T_{1} and T_{2}. Then T_{1} is a MST of $G_{1}=\left(V_{1}, E_{1}\right)$ and T_{2} is a MST of $G_{2}=\left(V_{2}, E_{2}\right) .{ }^{1}$

[^0]
MST

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of $G=(V, E)$. Removing (u, v) of T partitions T into two trees T_{1} and T_{2}. Then T_{1} is a MST of $G_{1}=\left(V_{1}, E_{1}\right)$ and T_{2} is a MST of $G_{2}=\left(V_{2}, E_{2}\right) .{ }^{1}$

Proof. Note that

$$
w(T)=w\left(T_{1}\right)+w(u, v)+w\left(T_{2}\right) .
$$

There cannot be a better subtree than T_{1} or T_{2}, otherwise T would be suboptimal.

[^1]
MST

2. Greedy-choice property:
${ }^{2}$ Note: there is an abuse of notation here that we will view A as being both edges and vertices.

MST

2. Greedy-choice property:

Let T be a MST of $G=(V, E), A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and $V-A$. Then $(u, v) \in T .{ }^{2}$

[^2]
MST

2. Greedy-choice property:

Let T be a MST of $G=(V, E), A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and $V-A$. Then $(u, v) \in T .{ }^{2}$

Proof. If $(u, v) \notin T$, then

- $(u, v) \cup T$ forms a cycle,
- replace one of edges of T by (u, v) form a new tree T
- this is contradiction to T is MST

[^3]MST

Prim's algorithm

- Basic idea:
- starts from an arbitrary root r

MST

Prim's algorithm

- Basic idea:
- starts from an arbitrary root r
- builds one tree, so that A is always a tree

MST

Prim's algorithm

- Basic idea:
- starts from an arbitrary root r
- builds one tree, so that A is always a tree
- at each step, find the next lightest edge crossing cut $(A, V-A)$ and add this edge to A ("greedy choice")

MST

Prim's algorithm

- Basic idea:
- starts from an arbitrary root r
- builds one tree, so that A is always a tree
- at each step, find the next lightest edge crossing cut $(A, V-A)$ and add this edge to A ("greedy choice")
- How to find the next lightest edge quickly?

MST

Prim's algorithm

- Basic idea:
- starts from an arbitrary root r
- builds one tree, so that A is always a tree
- at each step, find the next lightest edge crossing cut $(A, V-A)$ and add this edge to A ("greedy choice")
- How to find the next lightest edge quickly?

Answer: use a priority queue

Review: Priority Queue

A priority queue maintains a set S of elements, each with an associated value called a "key", and supports the following operations:

- Search(S,k): returns x in S with $\operatorname{key}[\mathrm{x}]=\mathrm{k}$
- Insert(S, x)/Delete(S, x): inserts/deletes the element \times into the set S
- Maximum(S)/Minimum(S): returns \times in S with largest/smallest key
- Extract-max(S)/Extract-min(S): removes and returns x in S with largest/smallest key
- Increase-key(S, x, k)/Decrease-key(S, x, k): increases/decreases the value of element x's key to the new value k
Recall that the priority queue has been used in Huffman coding.

MST

```
MST-Prim(G, w, r)
Q = empty
for each vertex u in V
    key[u] = infty // min. weight of any edge (w,u) and w in A
    pi[u] = nil // parent of u
    Insert(Q, u)
endfor
Decrease-key(Q,r,0)
while Q not empty
    u = Extract-Min(Q)
    for each v in Adj[u]
        if (v in Q) and (w(u,v) < key[v])
            Decrease-key(Q, v, w(u,v))
            pi[v] = u // parent of v
        endif
    endfor
endwhile
return A = { (v, pi[v]): v in V-{r} } // MST
```


MST

```
Run and illustrate Prim's algorithm
MST-Prim(G, w, r)
Q = empty
for each vertex u in V
    key[u] = infty // min. weight of any edge (w,u) and w in A
    pi[u] = nil // parent of u
    Insert(Q, u)
endfor
Decrease-key (Q,r,0)
while Q not empty
    u = Extract-Min(Q)
    for each v in Adj[u]
        if (v in Q) and (w(u,v) < key[v])
            Decrease-key(Q, v, w(u,v))
            pi[v] = u // parent of v
        endif
    endfor
endwhile
return A = {(v, pi[v]): v in v-{r} } // MST
```


MST

Prim's algorithm

1. Run and illustrate Prim's algorithm
2. Running time:

- depends on how the priorty queue Q is implemented
- Suppose Q is a binary heap (see Section 6.1)
- Initialize Q and the first for loop: $O(|V| \lg |V|)$
- Decrease key of root $r: O(\lg |V|)$
- While-loop:
a) $|V|$ Extract-Min calls: $O(|V| \lg |V|)$
b) $\leq|E|$ Decrease-Key calls: $O(|E| \lg |E|)$
- Total: $O(|E| \lg |V|)$
- Note: G is connected, $\lg |E|=\Theta(\lg |V|)$

MST

Kruskal's algorithm

- Basic idea:
- scan edges in increasing of weight
- put edge in if no loop created

MST

Kruskal's algorithm

- Basic idea:
- scan edges in increasing of weight
- put edge in if no loop created
- Why does this result in MST?

Answer: min-weight edge is always in MST (the greedy-choice property).

MST

Kruskal's algorithm

- Basic idea:
- scan edges in increasing of weight
- put edge in if no loop created
- Why does this result in MST?

Answer: min-weight edge is always in MST (the greedy-choice property).

- How to make sure "no loop created"?
use "disjoint-set" data structure

Review: Disjoint-Set

Disjoint-Set maintains a collection of $S=\left\{S_{1}, S_{2}, \ldots S_{k}\right\}$ of disjoint dynamic sets. Each set is identified by a representative, which is some member of the set.

A disjoint-set data structure supports the following operations:

- Make-set (x) : creates a new set whose only member (and thus representative) is x.
- Union (x, y) :
unites the sets that contain x and y, say S_{x} and S_{y}, into a new set that is the union of these two sets: $S_{x} \cup S_{y}$. The representative is any member of $S_{x} \cup S_{y}$.
- Find-set (x):
returns (a pointer to) the representative of the (unique) set containing x.

To learn more about the disjoint-set data structure, see Chapter 21.

MST

MST-Kruskal (G, w)

A = emtpy
for each vertex v in V
Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u, v) in E, taken in nondecreasing order by w if Find-set(u) \= Find-set(v)
$\mathrm{A}=\mathrm{A} U\{(\mathrm{u}, \mathrm{v})\}$
Union(u,v)
endif
endfor
return A

MST

Run and illustrate Prim's algorithm

MST-Kruskal (G, w)
A = emtpy
for each vertex v in V Make-set (v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E, taken in nondecreasing order by w
if Find-set (u) $\backslash=$ Find-set (v)
$A=A U\{(u, v)\}$
Union (u, v)
endif
endfor
return A

MST

Kruskal's algorithm

1. Run and illustrate Prim's algorithm
2. Running time:

- depends on the implementation of the disjoint-set
- Sort: $\Theta(|E| \lg |E|)$
- $|V|$ Make-Set ops
- $2|E|$ Find-Set ops
- $|V|-1$ Union ops
- Total: $O(|E| \lg |V|)$
- Note: G is connected, $\lg |E|=\Theta(\lg |V|)$

[^0]: ${ }^{1}$ The subgraph G_{1} is induced by vertices in T_{1}, i.e., $V_{1}=\left\{\right.$ vertices in $\left.T_{1}\right\}$ and $E_{1}=\left\{(x, y) \in E ; x, y \in V_{1}\right\}$. Similarly for G_{2}.

[^1]: ${ }^{1}$ The subgraph G_{1} is induced by vertices in T_{1}, i.e., $V_{1}=\left\{\right.$ vertices in $\left.T_{1}\right\}$ and $E_{1}=\left\{(x, y) \in E ; x, y \in V_{1}\right\}$. Similarly for G_{2}.

[^2]: ${ }^{2}$ Note: there is an abuse of notation here that we will view A as being both edges and vertices.

[^3]: ${ }^{2}$ Note: there is an abuse of notation here that we will view A as being both edges and vertices.

