
Minimum Spanning Tree (MST)

I Undirected connected weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Spanning tree: a tree that connects all vertices
Example

I Minimum Spanning Tree (MST) T

w(T) =
∑

(u,v)∈T

w(u, v) is minimized

Example: w(T) = 37.

I MST is not necessarily unique.
For simplicity in theory, assume all edge weight distinct, and therefore,
has a unique MST.

1 / 14

Minimum Spanning Tree (MST)

I Undirected connected weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Spanning tree: a tree that connects all vertices
Example

I Minimum Spanning Tree (MST) T

w(T) =
∑

(u,v)∈T

w(u, v) is minimized

Example: w(T) = 37.

I MST is not necessarily unique.
For simplicity in theory, assume all edge weight distinct, and therefore,
has a unique MST.

1 / 14

Minimum Spanning Tree (MST)

I Undirected connected weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Spanning tree: a tree that connects all vertices

Example

I Minimum Spanning Tree (MST) T

w(T) =
∑

(u,v)∈T

w(u, v) is minimized

Example: w(T) = 37.

I MST is not necessarily unique.
For simplicity in theory, assume all edge weight distinct, and therefore,
has a unique MST.

1 / 14

Minimum Spanning Tree (MST)

I Undirected connected weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Spanning tree: a tree that connects all vertices
Example

I Minimum Spanning Tree (MST) T

w(T) =
∑

(u,v)∈T

w(u, v) is minimized

Example: w(T) = 37.

I MST is not necessarily unique.
For simplicity in theory, assume all edge weight distinct, and therefore,
has a unique MST.

1 / 14

Minimum Spanning Tree (MST)

I Undirected connected weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Spanning tree: a tree that connects all vertices
Example

I Minimum Spanning Tree (MST) T

w(T) =
∑

(u,v)∈T

w(u, v) is minimized

Example: w(T) = 37.

I MST is not necessarily unique.
For simplicity in theory, assume all edge weight distinct, and therefore,
has a unique MST.

1 / 14

Minimum Spanning Tree (MST)

I Undirected connected weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Spanning tree: a tree that connects all vertices
Example

I Minimum Spanning Tree (MST) T

w(T) =
∑

(u,v)∈T

w(u, v) is minimized

Example: w(T) = 37.

I MST is not necessarily unique.
For simplicity in theory, assume all edge weight distinct, and therefore,
has a unique MST.

1 / 14

Minimum Spanning Tree (MST)

I Undirected connected weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Spanning tree: a tree that connects all vertices
Example

I Minimum Spanning Tree (MST) T

w(T) =
∑

(u,v)∈T

w(u, v) is minimized

Example: w(T) = 37.

I MST is not necessarily unique.
For simplicity in theory, assume all edge weight distinct, and therefore,
has a unique MST.

1 / 14

MST

Basic idea of computing (“growing”) a MST:

I construct the MST by successively select edges to include in the tree

I guarantee that after the inclusion of each new selected edge, it forms a
subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding

2 / 14

MST

Basic idea of computing (“growing”) a MST:

I construct the MST by successively select edges to include in the tree

I guarantee that after the inclusion of each new selected edge, it forms a
subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding

2 / 14

MST

Basic idea of computing (“growing”) a MST:

I construct the MST by successively select edges to include in the tree

I guarantee that after the inclusion of each new selected edge, it forms a
subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding

2 / 14

MST

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of G = (V,E). Removing (u, v) of T partitions T
into two trees T1 and T2. Then T1 is a MST of G1 = (V1, E1) and T2

is a MST of G2 = (V2, E2).
1

Proof. Note that

w(T) = w(T1) + w(u, v) + w(T2).

There cannot be a better subtree than T1 or T2, otherwise T would be
suboptimal.

1The subgraph G1 is induced by vertices in T1, i.e., V1 = {vertices in T1} and
E1 = {(x, y) ∈ E;x, y ∈ V1}. Similarly for G2.

3 / 14

MST

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of G = (V,E). Removing (u, v) of T partitions T
into two trees T1 and T2. Then T1 is a MST of G1 = (V1, E1) and T2

is a MST of G2 = (V2, E2).
1

Proof. Note that

w(T) = w(T1) + w(u, v) + w(T2).

There cannot be a better subtree than T1 or T2, otherwise T would be
suboptimal.

1The subgraph G1 is induced by vertices in T1, i.e., V1 = {vertices in T1} and
E1 = {(x, y) ∈ E;x, y ∈ V1}. Similarly for G2.

3 / 14

MST

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of G = (V,E). Removing (u, v) of T partitions T
into two trees T1 and T2. Then T1 is a MST of G1 = (V1, E1) and T2

is a MST of G2 = (V2, E2).
1

Proof. Note that

w(T) = w(T1) + w(u, v) + w(T2).

There cannot be a better subtree than T1 or T2, otherwise T would be
suboptimal.

1The subgraph G1 is induced by vertices in T1, i.e., V1 = {vertices in T1} and
E1 = {(x, y) ∈ E;x, y ∈ V1}. Similarly for G2.

3 / 14

MST

2. Greedy-choice property:

Let T be a MST of G = (V,E), A ⊆ T be a subtree of T , and (u, v)
be min-weight edge in G connecting A and V −A. Then (u, v) ∈ T .2

Proof. If (u, v) 6∈ T , then
I (u, v) ∪ T forms a cycle,
I replace one of edges of T by (u, v) form a new tree T
I this is contradiction to T is MST

2Note: there is an abuse of notation here that we will view A as being both edges
and vertices.

4 / 14

MST

2. Greedy-choice property:

Let T be a MST of G = (V,E), A ⊆ T be a subtree of T , and (u, v)
be min-weight edge in G connecting A and V −A. Then (u, v) ∈ T .2

Proof. If (u, v) 6∈ T , then
I (u, v) ∪ T forms a cycle,
I replace one of edges of T by (u, v) form a new tree T
I this is contradiction to T is MST

2Note: there is an abuse of notation here that we will view A as being both edges
and vertices.

4 / 14

MST

2. Greedy-choice property:

Let T be a MST of G = (V,E), A ⊆ T be a subtree of T , and (u, v)
be min-weight edge in G connecting A and V −A. Then (u, v) ∈ T .2

Proof. If (u, v) 6∈ T , then
I (u, v) ∪ T forms a cycle,
I replace one of edges of T by (u, v) form a new tree T
I this is contradiction to T is MST

2Note: there is an abuse of notation here that we will view A as being both edges
and vertices.

4 / 14

MST

Prim’s algorithm

I Basic idea:

I starts from an arbitrary root r

I builds one tree, so that A is always a tree
I at each step, find the next lightest edge crossing cut (A, V −A) and

add this edge to A (“greedy choice”)

I How to find the next lightest edge quickly?

Answer: use a priority queue

5 / 14

MST

Prim’s algorithm

I Basic idea:

I starts from an arbitrary root r
I builds one tree, so that A is always a tree

I at each step, find the next lightest edge crossing cut (A, V −A) and
add this edge to A (“greedy choice”)

I How to find the next lightest edge quickly?

Answer: use a priority queue

5 / 14

MST

Prim’s algorithm

I Basic idea:

I starts from an arbitrary root r
I builds one tree, so that A is always a tree
I at each step, find the next lightest edge crossing cut (A, V −A) and

add this edge to A (“greedy choice”)

I How to find the next lightest edge quickly?

Answer: use a priority queue

5 / 14

MST

Prim’s algorithm

I Basic idea:

I starts from an arbitrary root r
I builds one tree, so that A is always a tree
I at each step, find the next lightest edge crossing cut (A, V −A) and

add this edge to A (“greedy choice”)

I How to find the next lightest edge quickly?

Answer: use a priority queue

5 / 14

MST

Prim’s algorithm

I Basic idea:

I starts from an arbitrary root r
I builds one tree, so that A is always a tree
I at each step, find the next lightest edge crossing cut (A, V −A) and

add this edge to A (“greedy choice”)

I How to find the next lightest edge quickly?

Answer: use a priority queue

5 / 14

Review: Priority Queue

A priority queue maintains a set S of elements, each with an associated
value called a “key”, and supports the following operations:

I Search(S,k):
returns x in S with key[x] = k

I Insert(S, x)/Delete(S, x):
inserts/deletes the element x into the set S

I Maximum(S)/Minimum(S):
returns x in S with largest/smallest key

I Extract-max(S)/Extract-min(S):
removes and returns x in S with largest/smallest key

I Increase-key(S, x, k)/Decrease-key(S, x, k):
increases/decreases the value of element x’s key to the new value k

Recall that the priority queue has been used in Huffman coding.

6 / 14

MST
MST-Prim(G, w, r)

Q = empty

for each vertex u in V

key[u] = infty // min. weight of any edge (w,u) and w in A

pi[u] = nil // parent of u

Insert(Q, u)

endfor

Decrease-key(Q,r,0)

while Q not empty

u = Extract-Min(Q)

for each v in Adj[u]

if (v in Q) and (w(u,v) < key[v])

Decrease-key(Q, v, w(u,v))

pi[v] = u // parent of v

endif

endfor

endwhile

return A = { (v, pi[v]): v in V-{r} } // MST

7 / 14

MST

Run and illustrate Prim’s algorithm
MST-Prim(G, w, r)

Q = empty

for each vertex u in V

key[u] = infty // min. weight of any edge (w,u) and w in A

pi[u] = nil // parent of u

Insert(Q, u)

endfor

Decrease-key(Q,r,0)

while Q not empty

u = Extract-Min(Q)

for each v in Adj[u]

if (v in Q) and (w(u,v) < key[v])

Decrease-key(Q, v, w(u,v))

pi[v] = u // parent of v

endif

endfor

endwhile

return A = { (v, pi[v]): v in V-{r} } // MST

8 / 14

MST

Prim’s algorithm

1. Run and illustrate Prim’s algorithm

2. Running time:
I depends on how the priorty queue Q is implemented
I Suppose Q is a binary heap (see Section 6.1)

I Initialize Q and the first for loop: O(|V | lg |V |)
I Decrease key of root r: O(lg |V |)
I While-loop:

a) |V | Extract-Min calls: O(|V | lg |V |)
b) ≤ |E| Decrease-Key calls: O(|E| lg |E|)

I Total: O(|E| lg |V |)
I Note: G is connected, lg |E| = Θ(lg |V |)

9 / 14

MST

Kruskal’s algorithm

I Basic idea:

I scan edges in increasing of weight
I put edge in if no loop created

I Why does this result in MST?
Answer: min-weight edge is always in MST (the greedy-choice
property).

I How to make sure “no loop created”?
use “disjoint-set” data structure

10 / 14

MST

Kruskal’s algorithm

I Basic idea:

I scan edges in increasing of weight
I put edge in if no loop created

I Why does this result in MST?
Answer: min-weight edge is always in MST (the greedy-choice
property).

I How to make sure “no loop created”?
use “disjoint-set” data structure

10 / 14

MST

Kruskal’s algorithm

I Basic idea:

I scan edges in increasing of weight
I put edge in if no loop created

I Why does this result in MST?
Answer: min-weight edge is always in MST (the greedy-choice
property).

I How to make sure “no loop created”?
use “disjoint-set” data structure

10 / 14

Review: Disjoint-Set

Disjoint-Set maintains a collection of S = {S1, S2, ...Sk} of disjoint
dynamic sets. Each set is identified by a representative, which is some
member of the set.

A disjoint-set data structure supports the following operations:

I Make-set(x):
creates a new set whose only member (and thus representative) is x.

I Union(x, y):
unites the sets that contain x and y, say Sx and Sy, into a new set
that is the union of these two sets: Sx ∪ Sy. The representative is any
member of Sx ∪ Sy.

I Find-set(x):
returns (a pointer to) the representative of the (unique) set containing
x.

To learn more about the disjoint-set data structure, see Chapter 21.

11 / 14

MST
MST-Kruskal(G, w)

A = emtpy

for each vertex v in V

Make-set(v)

endfor

Sort the edges E in nondecreasing order by w

for each edge (u,v) in E, taken in nondecreasing order by w

if Find-set(u) \= Find-set(v)

A = A U {(u,v)}

Union(u,v)

endif

endfor

return A

12 / 14

MST

Run and illustrate Prim’s algorithm
MST-Kruskal(G, w)

A = emtpy

for each vertex v in V

Make-set(v)

endfor

Sort the edges E in nondecreasing order by w

for each edge (u,v) in E, taken in nondecreasing order by w

if Find-set(u) \= Find-set(v)

A = A U {(u,v)}

Union(u,v)

endif

endfor

return A

13 / 14

MST

Kruskal’s algorithm

1. Run and illustrate Prim’s algorithm

2. Running time:

I depends on the implementation of the disjoint-set
I Sort: Θ(|E| lg |E|)
I |V | Make-Set ops
I 2|E| Find-Set ops
I |V | − 1 Union ops
I Total: O(|E| lg |V |)
I Note: G is connected, lg |E| = Θ(lg |V |)

14 / 14

