• Undirected connected weighted graph G = (V, E, w)

- Undirected connected weighted graph G = (V, E, w)
- $\blacktriangleright \text{ Weight function } w: E \longrightarrow \mathbf{R}$

- Undirected connected weighted graph G = (V, E, w)
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices

- Undirected connected weighted graph G = (V, E, w)
- $\blacktriangleright \text{ Weight function } w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

- Undirected connected weighted graph G = (V, E, w)
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

▶ Minimum Spanning Tree (MST) T

$$w(T) = \sum_{(u,v) \in T} w(u,v) \quad \text{is minimized}$$

- Undirected connected weighted graph G = (V, E, w)
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

• Minimum Spanning Tree (MST) T

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$
 is minimized

Example: w(T) = 37.

- Undirected connected weighted graph G = (V, E, w)
- Weight function $w: E \longrightarrow \mathbf{R}$
- Spanning tree: a tree that connects all vertices Example

Minimum Spanning Tree (MST) T

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$
 is minimized

Example: w(T) = 37.

MST is not necessarily unique. For simplicity in theory, assume all edge weight distinct, and therefore, has a unique MST.

Basic idea of computing ("growing") a MST:

 \blacktriangleright construct the MST by successively select edges to include in the tree

Basic idea of computing ("growing") a MST:

- \blacktriangleright construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

Basic idea of computing ("growing") a MST:

- \blacktriangleright construct the MST by successively select edges to include in the tree
- guarantee that after the inclusion of each new selected edge, it forms a subset of some MST.

One of the most famous greedy algorithms, along with Huffman coding

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

¹The subgraph G_1 is induced by vertices in T_1 , i.e., $V_1 = \{$ vertices in $T_1 \}$ and $E_1 = \{(x, y) \in E; x, y \in V_1 \}$. Similarly for G_2 .

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of G = (V, E). Removing (u, v) of T partitions T into two trees T_1 and T_2 . Then T_1 is a MST of $G_1 = (V_1, E_1)$ and T_2 is a MST of $G_2 = (V_2, E_2)$.¹

¹The subgraph G_1 is induced by vertices in T_1 , i.e., $V_1 = \{$ vertices in $T_1 \}$ and $E_1 = \{(x, y) \in E; x, y \in V_1\}$. Similarly for G_2 .

Two basic properties:

1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be a MST of G = (V, E). Removing (u, v) of T partitions T into two trees T_1 and T_2 . Then T_1 is a MST of $G_1 = (V_1, E_1)$ and T_2 is a MST of $G_2 = (V_2, E_2)$.¹

Proof. Note that

$$w(T) = w(T_1) + w(u, v) + w(T_2).$$

There cannot be a better subtree than T_1 or T_2 , otherwise T would be suboptimal.

¹The subgraph G_1 is induced by vertices in T_1 , i.e., $V_1 = \{$ vertices in $T_1 \}$ and $E_1 = \{(x, y) \in E; x, y \in V_1 \}$. Similarly for G_2 .

2. Greedy-choice property:

²Note: there is an abuse of notation here that we will view A as being both edges and vertices.

2. Greedy-choice property:

Let T be a MST of G = (V, E), $A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and V - A. Then $(u, v) \in T$.²

²Note: there is an abuse of notation here that we will view A as being both edges and vertices.

2. Greedy-choice property:

Let T be a MST of G = (V, E), $A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and V - A. Then $(u, v) \in T$.²

Proof. If $(u, v) \notin T$, then

- $(u, v) \cup T$ forms a cycle,
- replace one of edges of T by (u, v) form a new tree T
- this is contradiction to T is MST

²Note: there is an abuse of notation here that we will view A as being both edges and vertices.

- Basic idea:
 - starts from an arbitrary root r

- Basic idea:
 - starts from an arbitrary root r
 - builds one tree, so that A is always a tree

- Basic idea:
 - starts from an arbitrary root r
 - builds one tree, so that A is always a tree
 - ▶ at each step, find the next lightest edge crossing cut (A, V A) and add this edge to A ("greedy choice")

- Basic idea:
 - starts from an arbitrary root r
 - builds one tree, so that A is always a tree
 - ▶ at each step, find the next lightest edge crossing cut (A, V A) and add this edge to A ("greedy choice")
- How to find the next lightest edge quickly?

Prim's algorithm

- Basic idea:
 - starts from an arbitrary root r
 - builds one tree, so that A is always a tree
 - ▶ at each step, find the next lightest edge crossing cut (A, V A) and add this edge to A ("greedy choice")
- How to find the next lightest edge quickly?

Answer: use a priority queue

Review: Priority Queue

A priority queue maintains a set S of elements, each with an associated value called a "key", and supports the following operations:

- Search(S,k): returns x in S with key[x] = k
- Insert(S, x)/Delete(S, x): inserts/deletes the element x into the set S
- Maximum(S)/Minimum(S): returns x in S with largest/smallest key
- Extract-max(S)/Extract-min(S): removes and returns x in S with largest/smallest key
- Increase-key(S, x, k)/Decrease-key(S, x, k): increases/decreases the value of element x's key to the new value k

Recall that the priority queue has been used in Huffman coding.

```
MST-Prim(G, w. r)
Q = empty
for each vertex u in V
    key[u] = infty // min. weight of any edge (w,u) and w in A
    pi[u] = nil // parent of u
    Insert(Q, u)
endfor
Decrease-key(Q,r,0)
while Q not empty
    u = Extract-Min(Q)
    for each v in Adj[u]
        if (v \text{ in } Q) and (w(u,v) < key[v])
            Decrease-key(Q, v, w(u,v))
            pi[v] = u // parent of v
       endif
    endfor
endwhile
return A = { (v, pi[v]): v in V-{r} } // MST
```

Run and *illustrate* Prim's algorithm

```
MST-Prim(G, w, r)
Q = empty
for each vertex u in V
    key[u] = infty // min. weight of any edge (w,u) and w in A
                   // parent of u
    pi[u] = nil
    Insert(Q, u)
endfor
Decrease-key(Q,r,0)
while Q not empty
    u = Extract-Min(Q)
    for each v in Adj[u]
        if (v \text{ in } Q) and (w(u,v) < key[v])
            Decrease-key(Q, v, w(u,v))
            pi[v] = u // parent of v
       endif
    endfor
enduhile
return A = { (v, pi[v]): v in V-{r} } // MST
```

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (

Prim's algorithm

- 1. Run and *illustrate* Prim's algorithm
- 2. Running time:
 - depends on how the priorty queue Q is implemented
 - ▶ Suppose *Q* is a binary heap (see Section 6.1)
 - Initialize Q and the first for loop: $O(|V|\lg |V|)$
 - Decrease key of root $r: O(\lg |V|)$
 - While-loop:
 - a) |V| Extract-Min calls: $O(|V| \lg |V|)$
 - b) $\leq |E|$ Decrease-Key calls: $O(|E|\lg|E|)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

9/14

- Total: $O(|E| \lg |V|)$
- Note: G is connected, $\lg |E| = \Theta(\lg |V|)$

Kruskal's algorithm

Basic idea:

- scan edges in increasing of weight
- put edge in if no loop created

Kruskal's algorithm

- Basic idea:
 - scan edges in increasing of weight
 - put edge in if no loop created
- Why does this result in MST? Answer: min-weight edge is always in MST (the greedy-choice property).

Kruskal's algorithm

- Basic idea:
 - scan edges in increasing of weight
 - put edge in if no loop created
- Why does this result in MST? Answer: min-weight edge is always in MST (the greedy-choice property).
- How to make sure "no loop created"? use "disjoint-set" data structure

Review: Disjoint-Set

Disjoint-Set maintains a collection of $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets. Each set is identified by a representative, which is some member of the set.

A disjoint-set data structure supports the following operations:

► Make-set(x):

creates a new set whose only member (and thus representative) is x.

• Union(x, y):

unites the sets that contain x and y, say S_x and S_y , into a new set that is the union of these two sets: $S_x \cup S_y$. The representative is any member of $S_x \cup S_y$.

Find-set(x):

returns (a pointer to) the representative of the (unique) set containing $\boldsymbol{x}.$

To learn more about the disjoint-set data structure, see Chapter 21.

```
MST-Kruskal(G, w)
A = emtpy
for each vertex v in V
    Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E, taken in nondecreasing order by w
    if Find-set(u) \geq Find-set(v)
        A = A U \{(u,v)\}
        Union(u,v)
    endif
endfor
return A
```

Run and *illustrate* Prim's algorithm

```
MST-Kruskal(G, w)
A = emtpy
for each vertex v in V
Make-set(v)
endfor
Sort the edges E in nondecreasing order by w
for each edge (u,v) in E, taken in nondecreasing order by w
if Find-set(u) \= Find-set(v)
A = A U {(u,v)}
Union(u,v)
endif
endfor
return A
```

Kruskal's algorithm

- 1. Run and *illustrate* Prim's algorithm
- 2. Running time:
 - depends on the implementation of the disjoint-set
 - Sort: $\Theta(|E|\lg|E|)$
 - ► |V| Make-Set ops
 - ▶ 2|E| Find-Set ops
 - ▶ |V| 1 Union ops
 - Total: $O(|E| \lg |V|)$
 - Note: G is connected, $\lg |E| = \Theta(\lg |V|)$