Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

Review: the rod cutting problem

Dynamic Programming Solution

- Phase I:

Since every optimal solution r_{n} has a leftmost cut with length i, the optimal revenue r_{n} is given by

$$
r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\}=p_{i_{*}}+r_{n-i_{*}}
$$

- Phase II:
compute r_{n} in bottom-up iteration (memoization)

Matrix-chain multiplication - DP case study 2

Review: Matrix-matrix multiplication

- Given A of order $p \times q$ and B of order $q \times r$, then $C=A B$ is of order $p \times r$, and (i, j)-entry of C is given by

$$
C_{i j}=\sum_{k=1}^{q} A_{i k} B_{k j}
$$

- Cost: pqr scalar multiplications

Matrix-chain multiplication

Review: ordering of matrix-chain multiplication

- Given A_{1} of order $p_{0} \times p_{1}$

$$
\begin{aligned}
& A_{2} \text { of order } p_{1} \times p_{2} \\
& A_{3} \text { of order } p_{2} \times p_{3}
\end{aligned}
$$

Then different orderings of the product $A_{1} A_{2} A_{3}$ generate the same result

$$
\left(A_{1} A_{2}\right) A_{3}=A_{1}\left(A_{2} A_{3}\right),
$$

but the costs are different!

- Example:

$$
\begin{aligned}
& A_{1}(10 \times 5), \quad A_{2}(5 \times 10), \quad A_{3}(10 \times 5) \\
& \quad \text { cost of }\left(A_{1} A_{2}\right) A_{3}=10 \cdot 5 \cdot 10+10 \cdot 10 \cdot 5=1000 \\
& \text { - cost of } A_{1}\left(A_{2} A_{3}\right)=5 \cdot 10 \cdot 5+10 \cdot 5 \cdot 5=500
\end{aligned}
$$

Matrix-chain multiplication

Problem statement:
Input: A sequence (chain) of $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of matrices, where A_{i} is of order $p_{i-1} \times p_{i}$.

Matrix-chain multiplication

Problem statement:
Input: A sequence (chain) of $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of matrices, where A_{i} is of order $p_{i-1} \times p_{i}$.

Output: full parenthesization (ordering) for the product $A_{1} \cdot A_{2} \cdots A_{n}$ that minimizes the number of (scalar) multiplications.

Matrix-chain multiplication

Brute-force solution

- Exhaustive search for determining the optimal ordering

Matrix-chain multiplication

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings

Matrix-chain multiplication

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings

1. Define
$P(n)=$ the number of orderings for a chain of n matrices

Matrix-chain multiplication

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings

1. Define

$$
P(n)=\text { the number of orderings for a chain of } n \text { matrices }
$$

2. Then $P(1)=1$ and for $n \geq 2$,

$$
\begin{aligned}
P(n) & =P(1) P(n-1)+P(2) P(n-2)+\cdots+P(n-1) P(1) \\
& =\sum_{k=1}^{n-1} P(k) P(n-k)
\end{aligned}
$$

Matrix-chain multiplication

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings

1. Define

$$
P(n)=\text { the number of orderings for a chain of } n \text { matrices }
$$

2. Then $P(1)=1$ and for $n \geq 2$,

$$
\begin{aligned}
P(n) & =P(1) P(n-1)+P(2) P(n-2)+\cdots+P(n-1) P(1) \\
& =\sum_{k=1}^{n-1} P(k) P(n-k)
\end{aligned}
$$

3. $P(n)$ is called a Catalan number, which grows as $P(n)=\Omega\left(2^{n}\right)$

Matrix-chain multiplication

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings

1. Define

$$
P(n)=\text { the number of orderings for a chain of } n \text { matrices }
$$

2. Then $P(1)=1$ and for $n \geq 2$,

$$
\begin{aligned}
P(n) & =P(1) P(n-1)+P(2) P(n-2)+\cdots+P(n-1) P(1) \\
& =\sum_{k=1}^{n-1} P(k) P(n-k)
\end{aligned}
$$

3. $P(n)$ is called a Catalan number, which grows as $P(n)=\Omega\left(2^{n}\right)$

- Therefore, exhaustive search for determining the optimal ordering is infeasible!

Matrix-chain multiplication

DP - step 1: characterize the structure of an optimal ordering

[^0]
Matrix-chain multiplication

DP - step 1: characterize the structure of an optimal ordering

- An optimal ordering of the product $A_{1} A_{2} \cdots A_{n}$ splits the product between A_{k} and A_{k+1} for some k :

$$
A_{1} A_{2} \cdots A_{n}=\underline{A_{1} \cdots A_{k}} \cdot \underline{A_{k+1} \cdots A_{n}}
$$

[^1]
Matrix-chain multiplication

DP - step 1: characterize the structure of an optimal ordering

- An optimal ordering of the product $A_{1} A_{2} \cdots A_{n}$ splits the product between A_{k} and A_{k+1} for some k :

$$
A_{1} A_{2} \cdots A_{n}=\underline{A_{1} \cdots A_{k}} \cdot \underline{A_{k+1} \cdots A_{n}}
$$

- Key observation: the ordering of $A_{1} \cdots A_{k}$ within this ("global") optimal ordering must be an optimal ordering of (sub-product) $A_{1} \cdots A_{k} .{ }^{1}$

[^2]
Matrix-chain multiplication

DP - step 1: characterize the structure of an optimal ordering

- An optimal ordering of the product $A_{1} A_{2} \cdots A_{n}$ splits the product between A_{k} and A_{k+1} for some k :

$$
A_{1} A_{2} \cdots A_{n}=\underline{A_{1} \cdots A_{k}} \cdot \underline{A_{k+1} \cdots A_{n}}
$$

- Key observation: the ordering of $A_{1} \cdots A_{k}$ within this ("global") optimal ordering must be an optimal ordering of (sub-product) $A_{1} \cdots A_{k}{ }^{1}$
- Similar observation holds for $A_{k+1} \cdots A_{n}$
- Thus, an optimal ("global") solution contains within it the optimal ("local") solutions to subproblems. (the optimal substructure property)

[^3]
Matrix-chain multiplication

DP - step 2: recursively define the value of an optimal solution

Matrix-chain multiplication

DP - step 2: recursively define the value of an optimal solution

- Define
$m[i, j]=$ min. number of multip. needed to compute $A_{i} \cdots A_{j}$.

Matrix-chain multiplication

DP - step 2: recursively define the value of an optimal solution

- Define
$m[i, j]=$ min. number of multip. needed to compute $A_{i} \cdots A_{j}$.
- By the definition,
$m[1, n]=$ the cheapest way for the product $A_{1} A_{2} \cdots A_{n}$.

Matrix-chain multiplication

DP - step 2: recursively define the value of an optimal solution

- Define

$$
m[i, j]=\text { min. number of multip. needed to compute } A_{i} \cdots A_{j} .
$$

- By the definition,
$m[1, n]=$ the cheapest way for the product $A_{1} A_{2} \cdots A_{n}$.
- $m[i, j]$ can be defined recursively

Matrix-chain multiplication

DP - step 2: recursively define the value of an optimal solution

- Define

$$
m[i, j]=\text { min. number of multip. needed to compute } A_{i} \cdots A_{j} .
$$

- By the definition,

$$
m[1, n]=\text { the cheapest way for the product } A_{1} A_{2} \cdots A_{n} .
$$

- $m[i, j]$ can be defined recursively

$$
\begin{aligned}
& \text { for } 1 \leq i \leq j \leq n, \\
& m[i, j]= \begin{cases}0 & \text { if } i=j \\
\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j\end{cases}
\end{aligned}
$$

Matrix-chain multiplication

DP - step 2: recursively define the value of an optimal solution

- Define

$$
m[i, j]=\text { min. number of multip. needed to compute } A_{i} \cdots A_{j} .
$$

- By the definition,

$$
m[1, n]=\text { the cheapest way for the product } A_{1} A_{2} \cdots A_{n} .
$$

- $m[i, j]$ can be defined recursively

$$
\begin{aligned}
& \text { for } 1 \leq i \leq j \leq n, \\
& m[i, j]= \begin{cases}0 & \text { if } i=j \\
\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j\end{cases}
\end{aligned}
$$

- To construct an optimal ordering, we track the value k such that $m[i, j]$ attains the minimum $\equiv k_{*} \equiv s[i, j]$

Matrix-chain multiplication

DP - step 3: compute the value of an optimal solution in a bottom-up approach

- Compute $m[i, j]$ and $s[i, j]$ in a bottom-up approach. (see the pseudocode in next page)

Matrix-chain multiplication

DP - step 3: compute the value of an optimal solution in a bottom-up approach

- Compute $m[i, j]$ and $s[i, j]$ in a bottom-up approach. (see the pseudocode in next page)
- Cost: $T(n)=\Theta\left(n^{3}\right)$ since

Matrix-chain multiplication

DP - step 3: compute the value of an optimal solution in a bottom-up approach

- Compute $m[i, j]$ and $s[i, j]$ in a bottom-up approach. (see the pseudocode in next page)
- Cost: $T(n)=\Theta\left(n^{3}\right)$ since

1. compute $n(n-1) / 2$ entries of m-table
2. for each entry of m-table, it finds the minimum of fewer than n expressions.

Matrix-chain multiplication

```
matrix-chain-order(p)
create m[1...n,1...n] and s[1...n,1...n] and n = length(p)-1
for i = 1 to n
    m[i,i] = 0
for d = 2 to n
    for i = 1 to n-d+1
        j = i + d - 1
        m[i,j] = +infty //compute m[i,j]=min_k{...}
        for k = i to j-1
        q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j]
        if q < m[i,j]
            m[i,j] = q
            s[i,j] = k
        endif
    endfor
    endfor
endfor
return m and s
```


Matrix-chain multiplication

DP - step 4: construct an optimal solution from computed m and s tables

Matrix-chain multiplication

Example 1. Let $\mathrm{p}=\left[\begin{array}{lllll}3 & 1 & 4 & 5\end{array}\right]$, namely, A_{1} is $3 \times 1, A_{2}$ is $1 \times 4, A_{3}$ is $4 \times 5, A_{4}$ is 5×4.
matrix-chain-order (p) generates the following m-table for optimal costs, and s-table for orderings:

$$
\begin{aligned}
\mathrm{m}= & {\left[\begin{array}{rrrrr}
0 & 12 & 35 & 52
\end{array}\right] } \\
& {\left[\begin{array}{rrrrr}
& 0 & 0 & 20 & 40
\end{array}\right] } \\
& {\left[\begin{array}{llrrr}
0 & 0 & 0 & 80
\end{array}\right] }
\end{aligned}
$$

$$
s=\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
0 & 0 & 2 & 3
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 0 & 0 & 3
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
0 & 0 & 0 & 0 &]
\end{array}\right.}
\end{aligned}
$$

Matrix-chain multiplication

Example 1. Let $\mathrm{p}=\left[\begin{array}{lllll}3 & 1 & 4 & 5\end{array}\right]$, namely, A_{1} is $3 \times 1, A_{2}$ is $1 \times 4, A_{3}$ is $4 \times 5, A_{4}$ is 5×4.
matrix-chain-order (p) generates the following m-table for optimal costs, and s-table for orderings:

$$
\begin{aligned}
\mathrm{m}= & {\left[\begin{array}{rrrrr}
0 & 12 & 35 & 52
\end{array}\right] } \\
& {\left[\begin{array}{rrrrr}
0 & 0 & 20 & 40
\end{array}\right] } \\
& {\left[\begin{array}{llrrl}
0 & 0 & 0 & 80
\end{array}\right] }
\end{aligned}
$$

$$
\left.s=\begin{array}{llllll}
{[} & 0 & 1 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 3
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0
\end{array}\right]
$$

By m-table, the minimum number of multiplications is

$$
m[1,4]=52
$$

Matrix-chain multiplication

Example 1. Let $\mathrm{p}=\left[\begin{array}{lllll}3 & 1 & 4 & 5\end{array}\right]$, namely, A_{1} is $3 \times 1, A_{2}$ is $1 \times 4, A_{3}$ is $4 \times 5, A_{4}$ is 5×4.
matrix-chain-order (p) generates the following m-table for optimal costs, and s-table for orderings:

$$
\left.\begin{array}{rlrl}
m= & {\left[\begin{array}{rrrr}
0 & 0 & 12 & 35 \\
5
\end{array}\right]} & {\left[\begin{array}{llll}
1
\end{array}\right.} & 0 \\
0 & 20 & 40
\end{array}\right] \quad s=\left[\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right]
$$

By m-table, the minimum number of multiplications is

$$
m[1,4]=52
$$

By s-table, an optimal parenthesization (ordering) of the matrix-chain multiplication is given by

$$
\left(A_{1}\right)\left(\left(A_{2} A_{3}\right) A_{4}\right)
$$

Matrix-chain multiplication

Example 2. Let $\mathrm{p}=\left[\begin{array}{lllllll}30 & 35 & 15 & 5 & 10 & 20 & 25\end{array}\right]$.

Matrix-chain multiplication

Example 2. Let $\mathrm{p}=\left[\begin{array}{lllllll}30 & 35 & 15 & 5 & 10 & 20 & 25\end{array}\right]$.
matrix-chain-order (p) generates the following m-table for optimal costs, and s-table for orderings:

Matrix-chain multiplication

Example 2. Let $\mathrm{p}=\left[\begin{array}{lllllll}30 & 35 & 15 & 5 & 10 & 20 & 25\end{array}\right]$.
matrix-chain-order (p) generates the following m-table for optimal costs, and s-table for orderings:

$$
\begin{aligned}
& \begin{aligned}
s= & {\left[\begin{array}{llllll}
0 & 1 & 1 & 3 & 3 & 3
\end{array}\right] } \\
& {\left[\begin{array}{lllllll}
0 & 0 & 2 & 3 & 3 & 3
\end{array}\right] } \\
& {\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 3 & 3
\end{array}\right] } \\
& {\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 5
\end{array}\right] } \\
& {\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
\end{aligned}
$$

By m-table, the minimum number of multiplications is

$$
m[1,6]=15125
$$

Matrix-chain multiplication

Example 2. Let $\mathrm{p}=\left[\begin{array}{lllllll}30 & 35 & 15 & 5 & 10 & 20 & 25\end{array}\right]$.
matrix-chain-order (p) generates the following m-table for optimal costs, and s-table for orderings:

$$
\begin{aligned}
& \begin{aligned}
s= & {\left[\begin{array}{llllll}
0 & 1 & 1 & 3 & 3 & 3
\end{array}\right] } \\
& {\left[\begin{array}{lllllll}
0 & 0 & 2 & 3 & 3 & 3
\end{array}\right] } \\
& {\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 3 & 3
\end{array}\right] } \\
& {\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 5
\end{array}\right] } \\
& {\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
\end{aligned}
$$

By m-table, the minimum number of multiplications is

$$
m[1,6]=15125
$$

By s-table, an optimal parenthesization (ordering) of the matrix-chain multiplication is given by

$$
\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right)
$$

[^0]: ${ }^{1}$ Why? simply argue by contradiction: If there were a less costly way to order the product $A_{1} \cdots A_{k}$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_{1} A_{2} \cdots A_{n}$, whose cost would be less than the optimum, a contradiction!

[^1]: ${ }^{1}$ Why? simply argue by contradiction: If there were a less costly way to order the product $A_{1} \cdots A_{k}$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_{1} A_{2} \cdots A_{n}$, whose cost would be less than the optimum, a contradiction!

[^2]: ${ }^{1}$ Why? simply argue by contradiction: If there were a less costly way to order the product $A_{1} \cdots A_{k}$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_{1} A_{2} \cdots A_{n}$, whose cost would be less than the optimum, a contradiction!

[^3]: ${ }^{1}$ Why? simply argue by contradiction: If there were a less costly way to order the product $A_{1} \cdots A_{k}$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_{1} A_{2} \cdots A_{n}$, whose cost would be less than the optimum, a contradiction!

