Dynamic Programming

Four-step (two-phase) method:

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed information

Review: the rod cutting problem

Dynamic Programming Solution

Phase I:

Since every optimal solution r_n has a leftmost cut with length $i,\,{\rm the}$ optimal revenue r_n is given by

$$r_n = \max_{1 \le i \le n} \{ p_i + r_{n-i} \} = p_{i_*} + r_{n-i_*}$$

Phase II:

compute r_n in bottom-up iteration (memoization)

Matrix-chain multiplication - DP case study 2

Review: Matrix-matrix multiplication

• Given A of order $p \times q$ and B of order $q \times r$, then C = AB is of order $p \times r$, and (i, j)-entry of C is given by

$$C_{ij} = \sum_{k=1}^{q} A_{ik} B_{kj}$$

Cost: pqr scalar multiplications

Review: ordering of matrix-chain multiplication

• Given A_1 of order $p_0 \times p_1$ A_2 of order $p_1 \times p_2$ A_3 of order $p_2 \times p_3$ Then different orderings of the product $A_1A_2A_3$ generate the same result

 $(A_1A_2)A_3 = A_1(A_2A_3),$

but the costs are different!

Example:

 $A_1(10 \times 5), \quad A_2(5 \times 10), \quad A_3(10 \times 5)$ $\bullet \ cost \ of \ (A_1A_2)A_3 = 10 \cdot 5 \cdot 10 + 10 \cdot 10 \cdot 5 = 1000$ $\bullet \ cost \ of \ A_1(A_2A_3) = 5 \cdot 10 \cdot 5 + 10 \cdot 5 \cdot 5 = 500$

Problem statement:

Input: A sequence (chain) of $(A_1, A_2, ..., A_n)$ of matrices, where A_i is of order $p_{i-1} \times p_i$.

Problem statement:

Input: A sequence (chain) of $(A_1, A_2, ..., A_n)$ of matrices, where A_i is of order $p_{i-1} \times p_i$.

Output: full parenthesization (ordering) for the product $A_1 \cdot A_2 \cdots A_n$ that minimizes the number of (scalar) multiplications.

Brute-force solution

Exhaustive search for determining the optimal ordering

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings
 - 1. Define

 ${\cal P}(n)={\rm the}\ {\rm number}\ {\rm of}\ {\rm orderings}\ {\rm for}\ {\rm a}\ {\rm chain}\ {\rm of}\ n\ {\rm matrices}$

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings
 - 1. Define

 ${\cal P}(n)={\rm the}\ {\rm number}\ {\rm of}\ {\rm orderings}\ {\rm for}\ {\rm a}\ {\rm chain}\ {\rm of}\ n\ {\rm matrices}$

2. Then P(1) = 1 and for $n \ge 2$,

$$P(n) = P(1)P(n-1) + P(2)P(n-2) + \dots + P(n-1)P(1)$$

=
$$\sum_{k=1}^{n-1} P(k)P(n-k)$$

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings
 - 1. Define

 ${\cal P}(n)={\rm the}\ {\rm number}\ {\rm of}\ {\rm orderings}\ {\rm for}\ {\rm a}\ {\rm chain}\ {\rm of}\ n\ {\rm matrices}$

2. Then P(1) = 1 and for $n \ge 2$,

$$P(n) = P(1)P(n-1) + P(2)P(n-2) + \dots + P(n-1)P(1)$$

=
$$\sum_{k=1}^{n-1} P(k)P(n-k)$$

3. P(n) is called a *Catalan number*, which grows as $P(n) = \Omega(2^n)$

Brute-force solution

- Exhaustive search for determining the optimal ordering
- Counting the total number of orderings
 - 1. Define

 ${\cal P}(n)={\rm the}\ {\rm number}\ {\rm of}\ {\rm orderings}\ {\rm for}\ {\rm a}\ {\rm chain}\ {\rm of}\ n\ {\rm matrices}$

2. Then P(1) = 1 and for $n \ge 2$,

$$P(n) = P(1)P(n-1) + P(2)P(n-2) + \dots + P(n-1)P(1)$$

=
$$\sum_{k=1}^{n-1} P(k)P(n-k)$$

3. P(n) is called a *Catalan number*, which grows as $P(n) = \Omega(2^n)$

Therefore, exhaustive search for determining the optimal ordering is infeasible!

DP - step 1: characterize the structure of an optimal ordering

¹Why? simply argue by contradiction: If there were a less costly way to order the product $A_1 \cdots A_k$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_1A_2 \cdots A_n$, whose cost would be less than the optimum, a contradiction!

- DP step 1: characterize the structure of an optimal ordering
 - ► An optimal ordering of the product A₁A₂···A_n splits the product between A_k and A_{k+1} for some k:

$$A_1 A_2 \cdots A_n = \underline{A_1 \cdots A_k} \cdot \underline{A_{k+1} \cdots A_n}$$

¹Why? simply argue by contradiction: If there were a less costly way to order the product $A_1 \cdots A_k$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_1A_2 \cdots A_n$, whose cost would be less than the optimum, a contradiction!

- DP step 1: characterize the structure of an optimal ordering
 - ► An optimal ordering of the product A₁A₂···A_n splits the product between A_k and A_{k+1} for some k:

$$A_1 A_2 \cdots A_n = \underline{A_1 \cdots A_k} \cdot \underline{A_{k+1} \cdots A_n}$$

► Key observation: the ordering of A₁ · · · A_k within this ("global") optimal ordering must be an optimal ordering of (sub-product) A₁ · · · A_k.¹

¹Why? simply argue by contradiction: If there were a less costly way to order the product $A_1 \cdots A_k$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_1A_2 \cdots A_n$, whose cost would be less than the optimum, a contradiction!

- DP step 1: characterize the structure of an optimal ordering
 - ► An optimal ordering of the product A₁A₂···A_n splits the product between A_k and A_{k+1} for some k:

$$A_1 A_2 \cdots A_n = \underline{A_1 \cdots A_k} \cdot \underline{A_{k+1} \cdots A_n}$$

- ► Key observation: the ordering of A₁ · · · A_k within this ("global") optimal ordering must be an optimal ordering of (sub-product) A₁ · · · A_k.¹
- Similar observation holds for $A_{k+1} \cdots A_n$
- Thus, an optimal ("global") solution contains within it the optimal ("local") solutions to subproblems. (the optimal substructure property)

¹Why? simply argue by contradiction: If there were a less costly way to order the product $A_1 \cdots A_k$, substituting that ordering within this (global) optimal ordering would produce another ordering of $A_1A_2 \cdots A_n$, whose cost would be less than the optimum, a contradiction!

DP - step 2: recursively define the value of an optimal solution

DP - step 2: recursively define the value of an optimal solution

Define

 $m[i, j] = \min$. number of multip. needed to compute $A_i \cdots A_j$.

- DP step 2: recursively define the value of an optimal solution
 - Define

 $m[i, j] = \min$. number of multip. needed to compute $A_i \cdots A_j$.

By the definition,

m[1,n] = the cheapest way for the product $A_1A_2 \cdots A_n$.

- DP step 2: recursively define the value of an optimal solution
 - Define

 $m[i, j] = \min$. number of multip. needed to compute $A_i \cdots A_j$.

By the definition,

m[1,n] = the cheapest way for the product $A_1A_2 \cdots A_n$.

• m[i, j] can be defined recursively

DP - step 2: recursively define the value of an optimal solution

Define

 $m[i, j] = \min$. number of multip. needed to compute $A_i \cdots A_j$.

By the definition,

m[1,n] = the cheapest way for the product $A_1A_2\cdots A_n$.

• m[i, j] can be defined recursively

for
$$1 \leq i \leq j \leq n$$
,

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

DP - step 2: recursively define the value of an optimal solution

Define

 $m[i, j] = \min$. number of multip. needed to compute $A_i \cdots A_j$.

By the definition,

m[1,n] = the cheapest way for the product $A_1A_2\cdots A_n$.

• m[i, j] can be defined recursively

for
$$1 \le i \le j \le n$$
,
 $m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$

To construct an optimal ordering, we track

the value k such that m[i,j] attains the minimum $\equiv k_{*} \equiv s[i,j]$

DP – step 3: compute the value of an optimal solution in a bottom-up approach

▶ Compute m[i, j] and s[i, j] in a bottom-up approach. (see the pseudocode in next page)

DP – step 3: compute the value of an optimal solution in a bottom-up approach

• Compute m[i, j] and s[i, j] in a bottom-up approach. (see the pseudocode in next page)

• Cost:
$$T(n) = \Theta(n^3)$$
 since

DP – step 3: compute the value of an optimal solution in a bottom-up approach

- ▶ Compute m[i, j] and s[i, j] in a bottom-up approach. (see the pseudocode in next page)
- Cost: $T(n) = \Theta(n^3)$ since
 - 1. compute n(n-1)/2 entries of m-table
 - 2. for each entry of m-table, it finds the minimum of fewer than n expressions.

```
matrix-chain-order(p)
create m[1...n,1...n] and s[1...n,1...n] and n = length(p)-1
for i = 1 to n
 m[i,i] = 0
for d = 2 to n
  for i = 1 to n-d+1
    j = i + d - 1
    m[i,j] = +infty //compute m[i,j]=min_k{...}
    for k = i to j-1
        q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j]
        if q < m[i,j]
          m[i,j] = q
           s[i,j] = k
        endif
     endfor
  endfor
endfor
return m and s
```

 DP – step 4: construct an optimal solution from computed m and s tables

Example 1. Let $p = [3 \ 1 \ 4 \ 5 \ 4]$, namely, A_1 is 3×1 , A_2 is 1×4 , A_3 is 4×5 , A_4 is 5×4 .

matrix-chain-order(p) generates the following *m*-table for optimal costs, and *s*-table for orderings:

m =	[0	12	35	52]	s =	[0	1	1	1]
	Γ	0	0	20	40]		Γ	0	0	2	3]
	Γ	0	0	0	80]		Γ	0	0	0	3]
	Γ	0	0	0	0]		Γ	0	0	0	0]

Example 1. Let $p = [3 \ 1 \ 4 \ 5 \ 4]$, namely, A_1 is 3×1 , A_2 is 1×4 , A_3 is 4×5 , A_4 is 5×4 .

matrix-chain-order(p) generates the following *m*-table for optimal costs, and *s*-table for orderings:

m =	[0	12	35	52]	s = [0 1 1 1]
	Γ	0	0	20	40]	[0023]
	Γ	0	0	0	80]	[0003]
	Ε	0	0	0	0]	[0000]

By m-table, the minimum number of multiplications is

m[1,4] = 52

12/13

Example 1. Let $p = [3 \ 1 \ 4 \ 5 \ 4]$, namely, A_1 is 3×1 , A_2 is 1×4 , A_3 is 4×5 , A_4 is 5×4 .

matrix-chain-order(p) generates the following *m*-table for optimal costs, and *s*-table for orderings:

m =	[0	12	35	52]	s =	[0	1	1	1]
	Ε	0	0	20	40]		Γ	0	0	2	3]
	[0	0	0	80]		Γ	0	0	0	3]
	Ε	0	0	0	0]		Γ	0	0	0	0]

By m-table, the minimum number of multiplications is

m[1,4] = 52

By s-table, an optimal parenthesization (ordering) of the matrix-chain multiplication is given by

 $(A_1)((A_2A_3)A_4)$

(ロ) (部) (E) (E) (E) (000)

Example 2. Let p = [30 35 15 5 10 20 25].

Example 2. Let p = [30 35 15 5 10 20 25].

matrix-chain-order(p) generates the following *m*-table for optimal costs, and *s*-table for orderings:

m = [0	15750	7875	9375	11875	15125]	s =	0	1	1	3	3	3]
[0	0	2625	4375	7125	10500]		0	0	2	3	3	3]
[0	0	0	750	2500	5375]		0	0	0	3	3	3]
[0	0	0	0	1000	3500]		0	0	0	0	4	5]
[0	0	0	0	0	5000]		0	0	0	0	0	5]
[0	0	0	0	0	0]		0	0	0	0	0	0]

Example 2. Let p = [30 35 15 5 10 20 25].

matrix-chain-order(p) generates the following *m*-table for optimal costs, and *s*-table for orderings:

m = [0 15750	7875	9375	11875	15125]	s = [0 1 1 3 3 3]
[0 0	2625	4375	7125	10500]	[002333]
[0 0	0	750	2500	5375]	[000333]
[0 0	0	0	1000	3500]	[000045]
[0 0	0	0	0	5000]	[000005]
[0 0	0	0	0	0]	[000000]

By m-table, the minimum number of multiplications is

m[1,6] = 15125

Example 2. Let p = [30 35 15 5 10 20 25].

matrix-chain-order(p) generates the following *m*-table for optimal costs, and *s*-table for orderings:

m =	[0	15750	7875	9375	11875	15125]	s = [0 1 1 3 3 3]
	[0	0	2625	4375	7125	10500]	[002333]
	[0	0	0	750	2500	5375]	[000333]
	[0	0	0	0	1000	3500]	[000045]
	[0	0	0	0	0	5000]	[000005]
	[0	0	0	0	0	0]	[000000]

By m-table, the minimum number of multiplications is

$$m[1,6] = 15125$$

By s-table, an optimal parenthesization (ordering) of the matrix-chain multiplication is given by

$$(A_1(A_2A_3))((A_4A_5)A_6)$$