
IV. Divide-and-Conquer Algorithms

1 / 10

Divide-and-Conquer algorithms – Overview

The divide-and-conquer (DC) strategy solves a problem by

1. Breaking the problem into subproblems that are themselves smaller
instances of the same type of problem (”divide”),

2. Recursively solving these subproblems (”conquer”),

3. Appropriately combining their answers (”combine”)

Recall that MergeSort serves as our first example of the DC paradigm. In
addition, in Homework 1, we have also explored the DC strategy for finding
min and max, ...

2 / 10

Divide-and-Conquer algorithms – Overview

The divide-and-conquer (DC) strategy solves a problem by

1. Breaking the problem into subproblems that are themselves smaller
instances of the same type of problem (”divide”),

2. Recursively solving these subproblems (”conquer”),

3. Appropriately combining their answers (”combine”)

Recall that MergeSort serves as our first example of the DC paradigm. In
addition, in Homework 1, we have also explored the DC strategy for finding
min and max, ...

2 / 10

Divide-and-Conquer algorithms – Overview

The divide-and-conquer (DC) strategy solves a problem by

1. Breaking the problem into subproblems that are themselves smaller
instances of the same type of problem (”divide”),

2. Recursively solving these subproblems (”conquer”),

3. Appropriately combining their answers (”combine”)

Recall that MergeSort serves as our first example of the DC paradigm. In
addition, in Homework 1, we have also explored the DC strategy for finding
min and max, ...

2 / 10

The maximum-subarray problem

Problem statement:

Input: an array A[1...n] of (positive/negative) numbers.

Output:

(1) Indices i and j such that the subarray A[i...j] has the
greatest sum of any nonempty contiguous subarray of A, and

(2) the sum of the values in A[i...j].

Note: Maximum subarray might not be unique, though its value is, so we
speak of a maximum subarray, rather than the maximum subarray.

3 / 10

The maximum-subarray problem

Problem statement:

Input: an array A[1...n] of (positive/negative) numbers.

Output:

(1) Indices i and j such that the subarray A[i...j] has the
greatest sum of any nonempty contiguous subarray of A, and

(2) the sum of the values in A[i...j].

Note: Maximum subarray might not be unique, though its value is, so we
speak of a maximum subarray, rather than the maximum subarray.

3 / 10

The maximum-subarray problem

Problem statement:

Input: an array A[1...n] of (positive/negative) numbers.

Output:

(1) Indices i and j such that the subarray A[i...j] has the
greatest sum of any nonempty contiguous subarray of A, and

(2) the sum of the values in A[i...j].

Note: Maximum subarray might not be unique, though its value is, so we
speak of a maximum subarray, rather than the maximum subarray.

3 / 10

The maximum-subarray problem

Problem statement:

Input: an array A[1...n] of (positive/negative) numbers.

Output:

(1) Indices i and j such that the subarray A[i...j] has the
greatest sum of any nonempty contiguous subarray of A, and

(2) the sum of the values in A[i...j].

Note: Maximum subarray might not be unique, though its value is, so we
speak of a maximum subarray, rather than the maximum subarray.

3 / 10

The maximum-subarray problem

Example 1: stock prices and changes

Day 0 1 2 3 4
Price 10 11 7 10 6
Change (= A[...]) 1 -4 3 -4

maximum-subarray: A[3] (i = j = 3) and Sum = 3

Example 2: stock prices and changes

Day 0 1 2 3 4 5 6
Price 10 11 7 10 14 12 18
Change (= A[...]) 1 -4 3 4 -2 6

maximum-subarray: A[3...6] (i = 3, j = 6) and Sum = 11.

4 / 10

The maximum-subarray problem

Example 1: stock prices and changes

Day 0 1 2 3 4
Price 10 11 7 10 6
Change (= A[...]) 1 -4 3 -4

maximum-subarray: A[3] (i = j = 3) and Sum = 3

Example 2: stock prices and changes

Day 0 1 2 3 4 5 6
Price 10 11 7 10 14 12 18
Change (= A[...]) 1 -4 3 4 -2 6

maximum-subarray: A[3...6] (i = 3, j = 6) and Sum = 11.

4 / 10

The maximum-subarray problem

Example 1: stock prices and changes

Day 0 1 2 3 4
Price 10 11 7 10 6
Change (= A[...]) 1 -4 3 -4

maximum-subarray: A[3] (i = j = 3) and Sum = 3

Example 2: stock prices and changes

Day 0 1 2 3 4 5 6
Price 10 11 7 10 14 12 18
Change (= A[...]) 1 -4 3 4 -2 6

maximum-subarray: A[3...6] (i = 3, j = 6) and Sum = 11.

4 / 10

The maximum-subarray problem

Example 1: stock prices and changes

Day 0 1 2 3 4
Price 10 11 7 10 6
Change (= A[...]) 1 -4 3 -4

maximum-subarray: A[3] (i = j = 3) and Sum = 3

Example 2: stock prices and changes

Day 0 1 2 3 4 5 6
Price 10 11 7 10 14 12 18
Change (= A[...]) 1 -4 3 4 -2 6

maximum-subarray: A[3...6] (i = 3, j = 6) and Sum = 11.

4 / 10

The maximum-subarray problem

Example 3: stock prices and changes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

A 13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

I maximum-subarray: A[i...j]?

I Answer: A[8...11] and sum = 43!

5 / 10

The maximum-subarray problem

Example 3: stock prices and changes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

A 13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

I maximum-subarray: A[i...j]?

I Answer: A[8...11] and sum = 43!

5 / 10

The maximum-subarray problem

Example 3: stock prices and changes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

A 13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

I maximum-subarray: A[i...j]?

I Answer: A[8...11] and sum = 43!

5 / 10

The maximum-subarray problem

Algorithm 1. Solve by brute-force

I Check all subarrays

I Total number of subarrays A[i...j]:(
n
2

)
=

n!

2!(n− 2)!
=

1

2
n(n− 1) = Θ(n2)

plus the arrays of length = 1.

I Cost T (n) = Θ(n2).

6 / 10

The maximum-subarray problem

Algorithm 1. Solve by brute-force

I Check all subarrays

I Total number of subarrays A[i...j]:(
n
2

)
=

n!

2!(n− 2)!
=

1

2
n(n− 1) = Θ(n2)

plus the arrays of length = 1.

I Cost T (n) = Θ(n2).

6 / 10

The maximum-subarray problem

Algorithm 1. Solve by brute-force

I Check all subarrays

I Total number of subarrays A[i...j]:(
n
2

)
=

n!

2!(n− 2)!
=

1

2
n(n− 1) = Θ(n2)

plus the arrays of length = 1.

I Cost T (n) = Θ(n2).

6 / 10

The maximum-subarray problem

Algorithm 1. Solve by brute-force

I Check all subarrays

I Total number of subarrays A[i...j]:(
n
2

)
=

n!

2!(n− 2)!
=

1

2
n(n− 1) = Θ(n2)

plus the arrays of length = 1.

I Cost T (n) = Θ(n2).

6 / 10

The maximum-subarray problem

Algorithm 2. Solve by Divide-and-Conquer

I Generic problem:
Find a maximum subarray of A[low...high]

with initial call: low = 1 and high = n

I DC strategy:

1. Divide A[low...high] into two subarrays of as equal size as possible by
finding the midpoint mid

2. Conquer:
(a) finding maximum subarrays of A[low...mid] and A[mid+ 1...high]
(b) finding a max-subarray that crosses the midpoint

3. Combine: returning the max of the three

I Correctness: This strategy works because any subarray must either lie
entirely in one side of midpoint or cross the midpoint.

7 / 10

The maximum-subarray problem

Algorithm 2. Solve by Divide-and-Conquer

I Generic problem:
Find a maximum subarray of A[low...high]

with initial call: low = 1 and high = n

I DC strategy:

1. Divide A[low...high] into two subarrays of as equal size as possible by
finding the midpoint mid

2. Conquer:
(a) finding maximum subarrays of A[low...mid] and A[mid+ 1...high]
(b) finding a max-subarray that crosses the midpoint

3. Combine: returning the max of the three

I Correctness: This strategy works because any subarray must either lie
entirely in one side of midpoint or cross the midpoint.

7 / 10

The maximum-subarray problem

Algorithm 2. Solve by Divide-and-Conquer

I Generic problem:
Find a maximum subarray of A[low...high]

with initial call: low = 1 and high = n

I DC strategy:

1. Divide A[low...high] into two subarrays of as equal size as possible by
finding the midpoint mid

2. Conquer:
(a) finding maximum subarrays of A[low...mid] and A[mid+ 1...high]
(b) finding a max-subarray that crosses the midpoint

3. Combine: returning the max of the three

I Correctness: This strategy works because any subarray must either lie
entirely in one side of midpoint or cross the midpoint.

7 / 10

The maximum-subarray problem

Algorithm 2. Solve by Divide-and-Conquer

I Generic problem:
Find a maximum subarray of A[low...high]

with initial call: low = 1 and high = n

I DC strategy:

1. Divide A[low...high] into two subarrays of as equal size as possible by
finding the midpoint mid

2. Conquer:
(a) finding maximum subarrays of A[low...mid] and A[mid+ 1...high]
(b) finding a max-subarray that crosses the midpoint

3. Combine: returning the max of the three

I Correctness: This strategy works because any subarray must either lie
entirely in one side of midpoint or cross the midpoint.

7 / 10

The maximum-subarray problem
MaxSubarray(A,low,high)

if high == low // base case: only one element

return (low, high, A[low])

else

// divide

mid = floor((low + high)/2)

// conquer

(leftlow,lefthigh,leftsum) = MaxSubarray(A,low,mid)

(rightlow,righthigh,rightsum) = MaxSubarray(A,mid+1,high)

(xlow,xhigh,xsum) = MaxXingSubarray(A,low,mid,high)

// combine

if leftsum >= rightsum and leftsum >= xsum

return (leftlow,lefthigh,leftsum)

else if rightsum >= leftsum and rightsum >= xsum

return (rightlow,righthigh,rightsum)

else

return (xlow,xhigh,xsum)

end if

end if

8 / 10

The maximum-subarray problem
MaxXingSubarray(A,low,mid,high)

leftsum = -infty; sum = 0 // Find max-subarray of A[i..mid]

for i = mid downto low

sum = sum + A[i]

if sum > leftsum

leftsum = sum

maxleft = i

end if

end for

rightsum = -infty; sum = 0 // Find max-subarray of A[mid+1..j]

for j = mid+1 to high

sum = sum + A[j]

if sum > rightsum

rightsum = sum

maxright = j

end if

end for

// Return the indices i and j and the sum of two subarrays

return (maxleft,maxright,leftsum+rightsum)

9 / 10

The maximum-subarray problem

Remarks:

1. Initial call: MaxSubarray(A,1,n)

2. Base case is when the subarray has only 1 element.

3. Divide by computing mid.
Conquer by the two recursive calls to MaxSubarray. and a call to
MaxXingSubarray

Combine by determining which of the three results gives the maximum
sum.

4. Complexity:

T (n) = 2 · T
(n
2

)
+Θ(n) +Θ(1)

= Θ(n lg n)

10 / 10

The maximum-subarray problem

Remarks:

1. Initial call: MaxSubarray(A,1,n)

2. Base case is when the subarray has only 1 element.

3. Divide by computing mid.
Conquer by the two recursive calls to MaxSubarray. and a call to
MaxXingSubarray

Combine by determining which of the three results gives the maximum
sum.

4. Complexity:

T (n) = 2 · T
(n
2

)
+Θ(n) +Θ(1)

= Θ(n lg n)

10 / 10

The maximum-subarray problem

Remarks:

1. Initial call: MaxSubarray(A,1,n)

2. Base case is when the subarray has only 1 element.

3. Divide by computing mid.
Conquer by the two recursive calls to MaxSubarray. and a call to
MaxXingSubarray

Combine by determining which of the three results gives the maximum
sum.

4. Complexity:

T (n) = 2 · T
(n
2

)
+Θ(n) +Θ(1)

= Θ(n lg n)

10 / 10

