
2. P and NP

I An algorithm is said to be polynomial bounded if its worst-case
complexity T (n) is bounded by a polynomial function of the input size
n:

T (n) = O(nk).

Examples:
algorithms for LCS, shortest path, MST, ...

I P = the class of decision problems that can be solved in polynomial
time, i.e., they are polynomial bounded
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2. P and NP

I NP = the class of decision problems that are verifiable in polynomial
time.

i.e., if we were given a “certificate” (= a solution), then we could
verify that whether the certificate (the solution) is correct in
polynomial time.

I Examples:
I Circuit-SAT
I Hamiltonian cycle
I Graph coloring

I NP stands for “Nondeterministic Polynomial time”.
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2. P and NP

I P ⊆ NP

since if a problem is in P, then we can solve it in polynomial
time without even being given a certificate.

I Open problem:1

Does P ⊂ NP or P = NP ?

1http://www.claymath.org/millennium-problems
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2. P and NP

I The size of the input can change the classification of P or NP.

I Examples:
I Prime-testing problem:

O(n)
n=10m−→ O(10m)

I Knapsack problem

O(nW )
W=10m−→ O(n · 10m)

I Knowing the effect on complexity of the size of the input is important.

I Unfortunately, even with strong restrictions on the inputs, many NPC
problems are still NPC.

Example: 3-CNF SAT problem2

2CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (∧)
operator. A clause is a sequence of Boolean varilables separated by the Boolean OR (∨)
operator.
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2. P and NP – recap

1. P and NP: formal definitions

2. Open problem: whether or not P is a proper subset of NP

3. The size of the input can change the classification of P or NP
However, even with strong restrictions on the inputs, many NPC
problems are still NPC.
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3. NP-complete

I NP-complete (NPC) is the term used to describe decision problems
that are the hardest ones in NP in the following sense

If there were a polynomial-bounded algorithm for an NPC
problem, then there would be a polynomial-bounded time for
each problem in NP.
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3. NP-complete

Formal definition:

I A decision problem A is NP-complete (NPC) if

(1) A ∈ NP and

(2) every other problems B in NP is polynomially reducible to A,
denoted as

B ≤T A

If a problem satisfies the property (2), but not necessarily the property (1),
we say the problem is NP-hard.3

3Note: “NP-hard” does not mean “in NP and hard”. It means “at least as hard as
any problem in NP”. Thus a problem can be NP-hard and not be in NP.
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3. NP-complete

Polynomial reduction

I Let A and B be two decision problems, B is polynomially reducible to
A, if there is a poly-time computable transformation T such that

Yes-instance of A
iff⇐⇒ Yes-instance of B

I Notation: B ≤T A
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3. NP-complete

I Cook’s theorem (1971):4

Circuit-SAT is NPC.

I Known NPC problems:

I Graph coloring
I Hamiltonian cycle
I TSP
I Knapsack
I ... see next page for more.

4First result deomonstrating that a specific problem is NPC.
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3. NP-complete

I Known NPC problems — more
I Subset sum:

Given a positive integer c, and a set S = {s1, s2, . . . , sn} of positive
integers si for i = 1, 2, . . . , n. Assume that

∑n
i=1 si ≥ c. Is there a

subset J ⊆ {1, 2, . . . , n} such that
∑

i∈J si = c.

I Bin packing problem:
Suppose we have an unlimited number of bins, each of capacity 1, and
n objects with sizes s1, s2, . . . , sn, where 0 < si ≤ 1. Determine the
smallest number of bins into which objects can be packed.

I Vertex cover problem:
A vertex-cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V
such that if (u, v) ∈ E, then u ∈ V ′ or v ∈ V ′. The vertex-cover
optimization problem is to find a vertex cover of minimum size.

I Clique problem:
A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V such
that each pair of V ′ is connected by an edge in E. The clique
optimization problem is to find a clique of maximum size.
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3. NP-complete

P, NP and NPC:

I How most theoretical computer scientists view the relationships
among P, NP and NPC:

I Both P and NPC are wholely contained within NP

I P
⋂

NPC = ∅

NP

P
NPC

11 / 12



3. NP-complete – Recap

1. NP-complete (NPC): formal definition

2. Polynomial reduction

3. Cook’s theorem

4. Examples of known NPC problems
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