► An algorithm is said to be *polynomial bounded* if its worst-case complexity T(n) is bounded by a polynomial function of the input size n:

$$T(n) = O(n^k).$$

Examples:

algorithms for LCS, shortest path, MST, ...

P = the class of decision problems that can be solved in polynomial time, i.e., they are polynomial bounded

NP = the class of decision problems that are verifiable in polynomial time.

i.e., if we were given a "certificate" (= a solution), then we could verify that whether the certificate (the solution) is correct in polynomial time.

- Examples:
 - Circuit-SAT
 - Hamiltonian cycle
 - Graph coloring
- NP stands for "Nondeterministic Polynomial time".

 $\blacktriangleright \mathsf{P} \subseteq \mathsf{NP}$

since if a problem is in P, then we can solve it in polynomial time without even being given a certificate.

Open problem:¹

Does $P \subset NP$ or P = NP ?

¹http://www.claymath.org/millennium-problems

• The size of the input can change the classification of P or NP.

 $^{^{2}}CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (<math>\wedge$) operator. A *clause* is a sequence of Boolean varilables separated by the Boolean OR (\vee) operator.

- The size of the input can change the classification of P or NP.
- Examples:
 - Prime-testing problem:

$$O(n) \stackrel{n=10^m}{\longrightarrow} O(10^m)$$

Knapsack problem

$$O(nW) \xrightarrow{W=10^m} O(n \cdot 10^m)$$

²CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (\land) operator. A *clause* is a sequence of Boolean varilables separated by the Boolean OR (\lor) operator.

- The size of the input can change the classification of P or NP.
- Examples:
 - Prime-testing problem:

$$O(n) \stackrel{n=10^m}{\longrightarrow} O(10^m)$$

Knapsack problem

$$O(nW) \xrightarrow{W=10^m} O(n \cdot 10^m)$$

Knowing the effect on complexity of the size of the input is important.

²CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (\land) operator. A *clause* is a sequence of Boolean varilables separated by the Boolean OR (\lor) operator.

- The size of the input can change the classification of P or NP.
- Examples:
 - Prime-testing problem:

$$O(n) \stackrel{n=10^m}{\longrightarrow} O(10^m)$$

Knapsack problem

$$O(nW) \xrightarrow{W=10^m} O(n \cdot 10^m)$$

- Knowing the effect on complexity of the size of the input is important.
- Unfortunately, even with strong restrictions on the inputs, many NPC problems are still NPC.

Example: 3-CNF SAT problem²

 $^{^{2}}CNF = Conjunctive Normal Form: a sequence of clauses separated by AND (<math>\wedge$) operator. A *clause* is a sequence of Boolean varilables separated by the Boolean OR (\vee) operator.

2. P and NP - recap

- 1. P and NP: formal definitions
- 2. Open problem: whether or not P is a proper subset of NP
- 3. The size of the input can change the classification of P or NP However, even with strong restrictions on the inputs, many NPC problems are still NPC.

NP-complete (NPC) is the term used to describe decision problems that are the *hardest ones* in NP in the following sense

If there were a polynomial-bounded algorithm for an NPC problem, then there would be a polynomial-bounded time for each problem in NP.

Formal definition:

► A decision problem A is **NP-complete** (**NPC**) if

Formal definition:

▶ A decision problem A is **NP-complete** (**NPC**) if

(1) $A \in \mathsf{NP}$ and

Formal definition:

- ▶ A decision problem A is **NP-complete** (**NPC**) if
 - (1) $A \in \mathsf{NP}$ and
 - (2) every other problems B in NP is *polynomially reducible* to A, denoted as

 $B \leq_T A$

Formal definition:

- ► A decision problem A is **NP-complete** (**NPC**) if
 - (1) $A \in \mathsf{NP}$ and
 - (2) every other problems B in NP is *polynomially reducible* to A, denoted as

 $B \leq_T A$

If a problem satisfies the property (2), but not necessarily the property (1), we say the problem is NP-hard.³

³Note: "NP-hard" does not mean "in NP and hard". It means "at least as hard as any problem in NP". Thus a problem can be NP-hard and not be in $\mathbb{A}NP$. $\mathbb{B} \to \mathbb{A} \cong \mathbb{A}$

Polynomial reduction

► Let A and B be two decision problems, B is polynomially reducible to A, if there is a poly-time computable transformation T such that

Yes-instance of $A \quad \stackrel{\text{iff}}{\iff} \quad \text{Yes-instance of } B$

• Notation: $B \leq_T A$

- Cook's theorem (1971):⁴
 Circuit-SAT is NPC.
- Known NPC problems:
 - Graph coloring
 - Hamiltonian cycle
 - TSP
 - Knapsack
 - ... see next page for more.

- Known NPC problems more
 - Subset sum:

Given a positive integer c, and a set $S = \{s_1, s_2, \ldots, s_n\}$ of positive integers s_i for $i = 1, 2, \ldots, n$. Assume that $\sum_{i=1}^n s_i \ge c$. Is there a subset $J \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in J} s_i = c$.

Bin packing problem:

Suppose we have an unlimited number of bins, each of capacity 1, and n objects with sizes s_1, s_2, \ldots, s_n , where $0 < s_i \leq 1$. Determine the *smallest number* of bins into which objects can be packed.

Vertex cover problem:

A vertex-cover of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$. The vertex-cover optimization problem is to find a vertex cover of minimum size.

Clique problem:

A clique in an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that each pair of V' is connected by an edge in E. The clique optimization problem is to find a clique of maximum size.

- P, NP and NPC:
 - How most theoretical computer scientists view the relationships among P, NP and NPC:
 - Both P and NPC are wholely contained within NP
 - $P \cap NPC = \emptyset$

3. NP-complete – Recap

- 1. NP-complete (NPC): formal definition
- 2. Polynomial reduction
- 3. Cook's theorem
- 4. Examples of known NPC problems