2. P and NP

- An algorithm is said to be polynomial bounded if its worst-case complexity $T(n)$ is bounded by a polynomial function of the input size n :

$$
T(n)=O\left(n^{k}\right) .
$$

Examples:
algorithms for LCS, shortest path, MST, ...

- $\mathbf{P}=$ the class of decision problems that can be solved in polynomial time, i.e., they are polynomial bounded

2. P and NP

- NP = the class of decision problems that are verifiable in polynomial time.
i.e., if we were given a "certificate" ($=$ a solution), then we could verify that whether the certificate (the solution) is correct in polynomial time.
- Examples:
- Circuit-SAT
- Hamiltonian cycle
- Graph coloring
- NP stands for "Nondeterministic Polynomial time".

2. P and NP

- $P \subseteq N P$
since if a problem is in P, then we can solve it in polynomial time without even being given a certificate.
- Open problem: ${ }^{1}$

$$
\text { Does } P \subset N P \text { or } P=N P ?
$$

${ }^{1}$ http://www.claymath.org/millennium-problems

2. P and NP

- The size of the input can change the classification of P or NP.
${ }^{2}$ CNF $=$ Conjunctive Normal Form: a sequence of clauses separated by AND (\wedge) operator. A clause is a sequence of Boolean varilables separated by the Boolean OR (V) operator.

2. P and NP

- The size of the input can change the classification of P or NP.
- Examples:
- Prime-testing problem:

$$
O(n) \xrightarrow{n=10^{m}} O\left(10^{m}\right)
$$

- Knapsack problem

$$
O(n W) \xrightarrow{W=10^{m}} O\left(n \cdot 10^{m}\right)
$$

${ }^{2}$ CNF $=$ Conjunctive Normal Form: a sequence of clauses separated by AND (\wedge) operator. A clause is a sequence of Boolean varilables separated by the Boolean OR (V) operator.

2. P and NP

- The size of the input can change the classification of P or NP.
- Examples:
- Prime-testing problem:

$$
O(n) \xrightarrow{n=10^{m}} O\left(10^{m}\right)
$$

- Knapsack problem

$$
O(n W) \xrightarrow{W=10^{m}} O\left(n \cdot 10^{m}\right)
$$

- Knowing the effect on complexity of the size of the input is important.

[^0]
2. P and NP

- The size of the input can change the classification of P or NP.
- Examples:
- Prime-testing problem:

$$
O(n) \xrightarrow{n=10^{m}} O\left(10^{m}\right)
$$

- Knapsack problem

$$
O(n W) \xrightarrow{W=10^{m}} O\left(n \cdot 10^{m}\right)
$$

- Knowing the effect on complexity of the size of the input is important.
- Unfortunately, even with strong restrictions on the inputs, many NPC problems are still NPC.

Example: 3-CNF SAT problem²

[^1]
2. P and NP - recap

1. P and NP: formal definitions
2. Open problem: whether or not P is a proper subset of NP
3. The size of the input can change the classification of P or NP However, even with strong restrictions on the inputs, many NPC problems are still NPC.

3. NP-complete

- NP-complete (NPC) is the term used to describe decision problems that are the hardest ones in NP in the following sense

If there were a polynomial-bounded algorithm for an NPC problem, then there would be a polynomial-bounded time for each problem in NP.

3. NP-complete

Formal definition:

- A decision problem A is NP-complete (NPC) if

[^2]
3. NP-complete

Formal definition:

- A decision problem A is NP-complete (NPC) if
(1) $A \in \mathrm{NP}$ and

[^3]
3. NP-complete

Formal definition:

- A decision problem A is NP-complete (NPC) if
(1) $A \in \mathrm{NP}$ and
(2) every other problems B in NP is polynomially reducible to A, denoted as

$$
B \leq_{T} A
$$

[^4]
3. NP-complete

Formal definition:

- A decision problem A is NP-complete (NPC) if
(1) $A \in \mathrm{NP}$ and
(2) every other problems B in NP is polynomially reducible to A, denoted as

$$
B \leq_{T} A
$$

If a problem satisfies the property (2), but not necessarily the property (1), we say the problem is NP-hard. ${ }^{3}$

[^5]
3. NP-complete

Polynomial reduction

- Let A and B be two decision problems, B is polynomially reducible to A, if there is a poly-time computable transformation T such that

$$
\text { Yes-instance of } A \quad \stackrel{\text { iff }}{\Longleftrightarrow} \quad \text { Yes-instance of } B
$$

- Notation: $B \leq_{T} A$

3. NP-complete

- Cook's theorem (1971): ${ }^{4}$

Circuit-SAT is NPC.

- Known NPC problems:
- Graph coloring
- Hamiltonian cycle
- TSP
- Knapsack
- ... see next page for more.
${ }^{4}$ First result deomonstrating that a specific problem is NPC.

3. NP-complete

- Known NPC problems - more
- Subset sum:

Given a positive integer c, and a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ of positive integers s_{i} for $i=1,2, \ldots, n$. Assume that $\sum_{i=1}^{n} s_{i} \geq c$. Is there a subset $J \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in J} s_{i}=c$.

- Bin packing problem:

Suppose we have an unlimited number of bins, each of capacity 1 , and n objects with sizes $s_{1}, s_{2}, \ldots, s_{n}$, where $0<s_{i} \leq 1$. Determine the smallest number of bins into which objects can be packed.

- Vertex cover problem:

A vertex-cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$, then $u \in V^{\prime}$ or $v \in V^{\prime}$. The vertex-cover optimization problem is to find a vertex cover of minimum size.

- Clique problem:

A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that each pair of V^{\prime} is connected by an edge in E. The clique optimization problem is to find a clique of maximum size.

3. NP-complete

P, NP and NPC:

- How most theoretical computer scientists view the relationships among P, NP and NPC:
- Both P and NPC are wholely contained within NP
- $P \cap N P C=\emptyset$

3. NP-complete - Recap

1. NP-complete (NPC): formal definition
2. Polynomial reduction
3. Cook's theorem
4. Examples of known NPC problems

[^0]: ${ }^{2}$ CNF $=$ Conjunctive Normal Form: a sequence of clauses separated by AND (\wedge) operator. A clause is a sequence of Boolean varilables separated by the Boolean OR (V) operator.

[^1]: ${ }^{2}$ CNF $=$ Conjunctive Normal Form: a sequence of clauses separated by AND (\wedge) operator. A clause is a sequence of Boolean varilables separated by the Boolean OR (V) operator.

[^2]: ${ }^{3}$ Note: "NP-hard" does not mean "in NP and hard". It means "at least as hard as any problem in NP". Thus a problem can be NP-hard and not be in NP.

[^3]: ${ }^{3}$ Note: "NP-hard" does not mean "in NP and hard". It means "at least as hard as any problem in NP". Thus a problem can be NP-hard and not be in NP.

[^4]: ${ }^{3}$ Note: "NP-hard" does not mean "in NP and hard". It means "at least as hard as any problem in NP". Thus a problem can be NP-hard and not be in NP.

[^5]: ${ }^{3}$ Note: "NP-hard" does not mean "in NP and hard". It means "at least as hard as any problem in NP". Thus a problem can be NP-hard and not be in NP.

