4. How to prove a problem is NPC

- The reducibility relation " \leq_{T} " is transitive, i.e,

$$
A \leq_{T} B \quad \text { and } \quad B \leq_{T} C \quad \text { imply } \quad A \leq_{T} C
$$

- Therefore, to prove that a problem A is NPC, we need to
(1) show that $A \in \mathrm{NP}$
(2) choose some known NPC problem B, i.e., $B \in$ NPC, define a polynomial transformation T from B to A show that $B \leq_{T} A$

4. How to prove a problem is NPC

- Why sufficient? the logic is as follows:

Since B is NPC, all problems in NP is reducible to B. Show B is reducible to A.
Then all problems in NP is reducible to A.
Therefore, A is NPC

4. How to prove a problem is NPC

Example 1.
The directed HC is known to be NPC. Use this fact to prove that Undirected HC is NPC.

Proof:
(1) By direct verification, we know that undirected HC is in NP.

Step A:	Define a transformation T
	Show that

$$
\text { directed } H C \quad \leq_{T} \text { undirected } H C
$$

- By (1) and (2), we conclude that the undirected HC is NPC.

4. How to prove a problem is NP-complete

Example 1, cont'd:
We now show that

```
directed HC \leqT undirected HC
```

Step A

- Define transformation T :

Let $G=(V, E)$ be a directed graph. Define G to the undirected graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by the following transformation T :

- $\underline{v \in V} \longrightarrow \quad v^{1}, v^{2}, v^{3} \in V^{\prime}$ and $\left(v^{1}, v^{2}\right),\left(v^{2}, v^{3}\right) \in E^{\prime}$
$\triangleright(u, v) \in E \quad \longrightarrow \quad\left(u^{3}, v^{1}\right) \in E^{\prime}$
- T is polynomial-time computable.

4. How to prove a problem is NP-complete

Example 1, cont'd:
An illustration of such transformation T :

4. How to prove a problem is NPC

Example 1, cont'd
Step B: We show that
G has a $\mathrm{HC} \Longleftrightarrow G^{\prime}$ has a HC .
$" \Rightarrow$ " Suppose that G has a directed HC: $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ Then

$$
v_{1}^{1}, v_{1}^{2}, v_{1}^{3}, v_{2}^{1}, v_{2}^{2}, v_{2}^{3}, \ldots, v_{n}^{1}, v_{n}^{2}, v_{n}^{3}, v_{1}^{1}
$$

is an undirected HC for G^{\prime}.

4. How to prove a problem is NPC

Example 1, cont'd
Step B: We show that

$$
G \text { has a } \mathrm{HC} \Longleftrightarrow G^{\prime} \text { has a } \mathrm{HC} \text {. }
$$

$" \Rightarrow$ " Suppose that G has a directed HC: $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ Then

$$
v_{1}^{1}, v_{1}^{2}, v_{1}^{3}, v_{2}^{1}, v_{2}^{2}, v_{2}^{3}, \ldots, v_{n}^{1}, v_{n}^{2}, v_{n}^{3}, v_{1}^{1}
$$

is an undirected HC for G^{\prime}.
$" \Leftarrow$ " $\quad 1$. Suppose that G^{\prime} has an undirected HC , the three vertices v^{1}, v^{2}, v^{3} that correspond to one vertex from G must be traversed consecutively in the order v^{1}, v^{2}, v^{3} or v^{3}, v^{2}, v^{1}, since v^{2} cannot be reached from any other vertex in G^{\prime}.
2. Since the other edges in G^{\prime} connect vertices with superscripts 1 or 3 , if for any one triple the order of the superscripts is $1,2,3$, then the order is $1,2,3$ for all triples. Otherwise, it is $3,2,1$ for all triples.
3. Therefore, we may assume that the undirected HC of G^{\prime} is

$$
\underline{v_{i_{1}}^{1}, v_{i_{1}}^{2}, v_{i_{1}}^{3}}, \underline{v_{i_{2}}}, v_{i_{2}}^{2}, v_{i_{2}}^{3}, \ldots, \underline{v_{i_{n}}^{1}}, v_{i_{n}}^{2}, v_{i_{n}}^{3}, \underline{v_{i_{1}}^{1}} .
$$

Then $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}, v_{i_{1}}$ is a directed HC for G.

4. How to prove a problem is NPC

Example 2: Show that

$$
\text { Subset-Sum } \leq_{T} \text { Set-Partition }
$$

Since Subset-Sum is known to be NPC, the above reduction implies that Set-Partition is also NPC.

Subset-Sum decision problem:
Given a positive integer c, and a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ of positive integers s_{i} for $i=1,2, \ldots, n$. Is there a $J \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in J} s_{i}=c$? assume that $w=\sum_{i=1}^{n} s_{i} \geq c$.

Set-Partition decision problem:
Given a set S of numbers. Can S be partitioned into two sets A
and $\bar{A}=S-A$ such that $\sum_{x \in A} x=\sum_{x \in \bar{A}} x$?

4. How to prove a problem is NPC

Example 2, cont'd

- Let S be an instance of Subset-Sum with $w=\sum_{s_{i} \in S} s_{i}$ and the target c.
- Define the set S^{\prime} (i.e., the transformation T from S to S^{\prime}) as follows:

$$
S^{\prime}=S \cup\{u, v\}, \quad \text { where } \quad u=2 w-c, \quad v=w+c .
$$

- Next to show that

Yes of Subset-Sum of $S \Longleftrightarrow$ Yes of Set-Partition of S^{\prime}

4. How to prove a problem is NPC

Example 2, cont'd
\Longrightarrow Let $J \subseteq S$ and the elements in J sum to c. Then $J \cup\{u\}$ sum to $2 w$. Note that the elements in $\bar{J}=S-J$ sum to $w-c$. Hence, $\bar{J} \cup\{v\}$ also sums to $2 w$. Therefore, S^{\prime} can be partioned into $J \cup\{u\}$ and $\bar{J} \cup\{v\}$ where both partitions sum to $2 w$. Thus, Yes of Subset-Sum transforms to a Yes of Set-Partition.

4. How to prove a problem is NPC

Example 2, cont'd
\Longleftarrow Assume S^{\prime} can be partitioned into two sets, T and $\bar{T}=S^{\prime}-T$, such that

$$
\begin{equation*}
\sum_{x \in T} x=\sum_{x \in \bar{T}} x \tag{1}
\end{equation*}
$$

Since $w+u+v=4 w$, the sum of the elements in both sets must be equal to $2 w$. Therefore, u must be in one set and v must be in the other because $u+v=3 w$. Without loss of generality, let $u \in T$. Then

$$
2 w=\sum_{x \in T} x=u+\sum_{x \in T-u} x=2 w-c+\sum_{x \in T-u} x
$$

It implies that

$$
\sum_{x \in T-u} x=c
$$

Thus, Yes of Set-Partition transforms to Yes of Subset-Sum.

5. How to solve a NPC problem

Example 1: Bin Packing problem
Suppose we have an unlimited number of bins, each of capacity 1, and n objects with sizes $s_{1}, s_{2}, \ldots, s_{n}$, where $0<s_{i} \leq 1$.

- Optimization problem: Determine the smallest number of bins into which objects can be packed and find an optimal packing.
- Decision problem: Do the objects fit in k bins?

Theorem. Bin Packing problem is NPC
Proof. reduced from the subset sum.

5. How to solve a NP-complete problem

Approximate algorithm for the Bin Packing

- First-fit strategy (greedy):
places an object in the first bin into which it fits.
- Example: Objects $=\{0.8,0.5,0.4,0.4,0.3,0.2,0.2,0.2\}$
- First-fit strategy solution:

$$
\begin{array}{ccccc}
\frac{B_{1}}{} & & B_{2} & & B_{3} \\
0.2 & & 0.4 & & B_{4} \\
0.2 & 0.3 & \\
0.8 & 0.5 & & 0.4 & 0.2
\end{array}
$$

- Optimal packing:

$$
\begin{array}{cccc}
B_{1} & & B_{2} & \\
\cline { 1 - 1 } & & B_{3} \\
& & 0.3 & \\
0.2 \\
0.8 & & 0.5 & \\
0.4 \\
\hline
\end{array}
$$

5. How to solve a NP-complete problem

Theorem. Let $S=\sum_{i=1}^{n} s_{i}$.

1. The optimal number of bins required is at least $\lceil S\rceil$
2. The number of bins used by the first-fit strategy is never more than $\lceil 2 S\rceil$.

5. How to solve a NP-complete problem

The vertex-cover problem:

- A vertex-cover of an undirected graph $G=(V, E)$ is a subset set of $V^{\prime} \subseteq V$ such that if $(u, v) \in E$, then $u \in V^{\prime}$ (inclusive) or $v \in V^{\prime}$.
- In other words, each vertex "covers" its incident edges, and a vertex cover for G is a set of vertices that covers all edges in E.
- The size of a vertex cover is the number of vertices in it.
- Decision problem: determine whether a graph has a vertex cover of a given size k
- Optimization problem: find a vertex cover of minimum size.
- Theorem. The vertex-cover problem is NPC.

5. How to solve a NP-complete problem

The vertex-cover problem:

- An approximate algorithm
$C=\emptyset$
$E^{\prime}=E$
while $E^{\prime} \neq \emptyset$
let (u, v) be an arbitrary edge of E^{\prime}
$C=C \cup\{u, v\}$
remove from E^{\prime} every edge incident on either u or v.
endwhile
return C
- Theorem. The size of the vertex-cover is no more than twice the size of an optimal vertex cover.

