4. How to prove a problem is NPC
» The reducibility relation “<p" is transitive, i.e,

A<y B and B<pC imply A<y C

» Therefore, to prove that a problem A is NPC, we need to
(1) show that A € NP
(2) choose some known NPC problem B, i.e., B € NPC,

define a polynomial transformation T from B to A
show that B <r A



4. How to prove a problem is NPC

» Why sufficient? the logic is as follows:
Since B is NPC, all problems in NP is reducible to B.
Show B is reducible to A.

Then all problems in NP is reducible to A.
Therefore, A is NPC



4. How to prove a problem is NPC

Example 1.
The directed HC is known to be NPC. Use this fact to prove that
Undirected HC is NPC.
Proof:
(1) By direct verification, we know that undirected HC is in NP.
(2)
Define a transformation T'

| Step A
Show that

directed HC <p  undirected HC

> By (1) and (2), we conclude that the undirected HC is NPC.



4. How to prove a problem is NP-complete

Example 1, cont'd:
We now show that

directed HC <gp  undirected HC

» Define transformation T':

Let G = (V, E) be a directed graph. Define G to the
undirected graph G' = (V', E’) by the following
transformation T':

» eV — vh0% vt eV oand (vt o?), (WP 0?) € B

> (u,v)€EE — (W0t e R

» T is polynomial-time computable.



4. How to prove a problem is NP-complete

Example 1, cont'd:

An illustration of such transformation 7'



4. How to prove a problem is NPC

Example 1, cont'd

We show that

G has a HC <= G’ has a HC.

"=" Suppose that G has a directed HC: vy, v9,...,v,,v1 Then
1,2 .3 1 2 3 1,2 .3 1
UL, VT, VT, Ugy V3, V5 ooy Vs s Uty Unn s U]

is an undirected HC for G".
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4. How to prove a problem is NPC

Example 1, cont'd

We show that

G has a HC <= G’ has a HC.
“=" Suppose that G has a directed HC: vy, vs,...,v,,v1 Then

2 3 1 2 3 1,2 ,3 1
U1,V1,U1,Vg,VUq,VUgy...,U,,V,,VUp, Uy

is an undirected HC for G".

1. Suppose that G’ has an undirected HC, the three vertices v!, v?, v
that correspond to one vertex from G must be traversed consecutively
in the order v',v%,v® or v3, 0%, v!, since v? cannot be reached from
any other vertex in G.

2. Since the other edges in G’ connect vertices with superscripts 1 or 3, if
for any one triple the order of the superscripts is 1, 2, 3, then the order
is 1, 2, 3 for all triples. Otherwise, it is 3, 2, 1 for all triples.

3. Therefore, we may assume that the undirected HC of G’ is

“ " 3

P

1 2 3 1 2 3 1 2 3 1
vil7vilavi1>vi2>vi27vi27'"7’0717,,71]1'7,71}'[717’02'1'

Then vy, ,vig, ..., vi,,v:, is a directed HC for G. |
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4. How to prove a problem is NPC
Example 2: Show that
Subset-Sum < Set-Partition

Since Subset-Sum is known to be NPC, the above reduction implies that
Set-Partition is also NPC.

Subset-Sum decision problem:
Given a positive integer ¢, and a set S = {s1,52,...,8,} of
positive integers s; fori =1,2,...,n. Istherea J C {1,2,...,n}
n
such that Z s; = ¢? assume that w = Zsi > c.
icd i=1
Set-Partition decision problem:

Given a set S of numbers. Can S be partitioned into two sets A
and A =S — A such thath: Zx?

T€EA z€A



4. How to prove a problem is NPC
Example 2, cont'd

> Let S be an instance of Subset-Sum with w = Z s; and the target c.
s, €S
> Define the set S’ (i.e., the transformation T" from S to S’) as follows:

S =Su{u,v}, where u=2w—-¢, v=w+c.

» Next to show that
Yes of Subset-Sum of S <= Yes of Set-Partition of S’



4. How to prove a problem is NPC

Example 2, cont'd

= Let J C S and the elements in J sum to ¢. Then J U {u} sum to 2w.
Note that the elements in J = S — J sum to w — c. Hence, J U {v} also
sums to 2w. Therefore, S’ can be partioned into J U {u} and J U {v}
where both partitions sum to 2w. Thus, Yes of Subset-Sum transforms to a

Yes of Set-Partition.
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4. How to prove a problem is NPC

Example 2, cont'd -
<= Assume S’ can be partitioned into two sets, T and T = S’ — T, such

that
Z:E:Zx. (1)
zeT z€T

Since w 4+ u + v = 4w, the sum of the elements in both sets must be equal
to 2w. Therefore, u must be in one set and v must be in the other because
u + v = 3w. Without loss of generality, let w € T. Then

2w=Zx:u+ Z T =2w—c+ Z x.

zeT €T —u €T —u

Z T=c

zeT—u

It implies that

Thus, Yes of Set-Partition transforms to Yes of Subset-Sum. O



5. How to solve a NPC problem
Example 1: Bin Packing problem

Suppose we have an unlimited number of bins, each of capacity 1,
and n objects with sizes s1,S2,...,Sy, where 0 < s; < 1.

» Optimization problem: Determine the smallest number of bins into
which objects can be packed and find an optimal packing.

» Decision problem: Do the objects fit in k& bins?

Theorem. Bin Packing problem is NPC
Proof. reduced from the subset sum.
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5. How to solve a NP-complete problem

Approximate algorithm for the Bin Packing
> First-fit strategy (greedy):

places an object in the first bin into which it fits.

» Example: Objects = {0.8, 0.5, 0.4, 0.4, 0.3, 0.2, 0.2, 0.2}

> First-fit strategy solution:

B By B3 B,
0.2
0.2 0.4 0.3
0.8 0.5 0.4 0.2
» Optimal packing:
B By B3
0.2 0.2
0.2 0.3 0.4
0.8 0.5 0.4



5. How to solve a NP-complete problem

n
Theorem. Let S = Z Si.
i=1
1. The optimal number of bins required is at least [S]

2. The number of bins used by the first-fit strategy is never more than
[25].
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5. How to solve a NP-complete problem

The vertex-cover problem:

> A vertex-cover of an undirected graph G = (V, E) is a subset set of
V' CV such that if (u,v) € E, then v € V' (inclusive) or v € V.

» In other words, each vertex “covers” its incident edges, and a vertex
cover for G is a set of vertices that covers all edges in F.

» The size of a vertex cover is the number of vertices in it.

» Decision problem: determine whether a graph has a vertex cover of a
given size k

» Optimization problem: find a vertex cover of minimum size.

» Theorem. The vertex-cover problem is NPC.
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5. How to solve a NP-complete problem

The vertex-cover problem:

» An approximate algorithm
C=0
E'=F
while B’ #
let (u,v) be an arbitrary edge of E’

C =CU{u,v}

remove from E’ every edge incident on either u or v.
endwhile
return C

» Theorem. The size of the vertex-cover is no more than twice the size
of an optimal vertex cover.
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