
4. How to prove a problem is NPC

I The reducibility relation “≤T ” is transitive, i.e,

A ≤T B and B ≤T C imply A ≤T C

I Therefore, to prove that a problem A is NPC, we need to

(1) show that A ∈ NP

(2) choose some known NPC problem B, i.e., B ∈ NPC,
define a polynomial transformation T from B to A
show that B ≤T A

1 / 15



4. How to prove a problem is NPC

I Why sufficient? the logic is as follows:

Since B is NPC, all problems in NP is reducible to B.
Show B is reducible to A.
Then all problems in NP is reducible to A.
Therefore, A is NPC

2 / 15



4. How to prove a problem is NPC

Example 1.

The directed HC is known to be NPC. Use this fact to prove that
Undirected HC is NPC.

Proof:

(1) By direct verification, we know that undirected HC is in NP.
(2)

Step A: Define a transformation T

Step B: Show that

directed HC ≤T undirected HC

I By (1) and (2), we conclude that the undirected HC is NPC.

3 / 15



4. How to prove a problem is NP-complete

Example 1, cont’d:

We now show that

directed HC ≤T undirected HC

Step A

I Define transformation T :

Let G = (V,E) be a directed graph. Define G to the
undirected graph G′ = (V ′, E′) by the following
transformation T :

I v ∈ V −→ v1, v2, v3 ∈ V ′ and (v1, v2), (v2, v3) ∈ E′

I (u, v) ∈ E −→ (u3, v1) ∈ E′

I T is polynomial-time computable.

4 / 15



4. How to prove a problem is NP-complete

Example 1, cont’d:

An illustration of such transformation T :

5 / 15



4. How to prove a problem is NPC

Example 1, cont’d

Step B: We show that

G has a HC ⇐⇒ G′ has a HC.

“⇒” Suppose that G has a directed HC: v1, v2, . . . , vn, v1 Then

v1
1 , v

2
1 , v

3
1 , v

1
2 , v

2
2 , v

3
2 , . . . , v

1
n, v

2
n, v

3
n, v

1
1

is an undirected HC for G′.

“⇐” 1. Suppose that G′ has an undirected HC, the three vertices v1, v2, v3

that correspond to one vertex from G must be traversed consecutively
in the order v1, v2, v3 or v3, v2, v1, since v2 cannot be reached from
any other vertex in G′.

2. Since the other edges in G′ connect vertices with superscripts 1 or 3, if
for any one triple the order of the superscripts is 1, 2, 3, then the order
is 1, 2, 3 for all triples. Otherwise, it is 3, 2, 1 for all triples.

3. Therefore, we may assume that the undirected HC of G′ is

v1i1 , v
2
i1 , v

3
i1 , v

1
i2 , v

2
i2 , v

3
i2 , . . . , v

1
in , v

2
in , v

3
in , v

1
i1 .

Then vi1 , vi2 , . . . , vin , vi1 is a directed HC for G. 2

6 / 15



4. How to prove a problem is NPC

Example 1, cont’d

Step B: We show that

G has a HC ⇐⇒ G′ has a HC.

“⇒” Suppose that G has a directed HC: v1, v2, . . . , vn, v1 Then

v1
1 , v

2
1 , v

3
1 , v

1
2 , v

2
2 , v

3
2 , . . . , v

1
n, v

2
n, v

3
n, v

1
1

is an undirected HC for G′.

“⇐” 1. Suppose that G′ has an undirected HC, the three vertices v1, v2, v3

that correspond to one vertex from G must be traversed consecutively
in the order v1, v2, v3 or v3, v2, v1, since v2 cannot be reached from
any other vertex in G′.

2. Since the other edges in G′ connect vertices with superscripts 1 or 3, if
for any one triple the order of the superscripts is 1, 2, 3, then the order
is 1, 2, 3 for all triples. Otherwise, it is 3, 2, 1 for all triples.

3. Therefore, we may assume that the undirected HC of G′ is

v1i1 , v
2
i1 , v

3
i1 , v

1
i2 , v

2
i2 , v

3
i2 , . . . , v

1
in , v

2
in , v

3
in , v

1
i1 .

Then vi1 , vi2 , . . . , vin , vi1 is a directed HC for G. 2

6 / 15



4. How to prove a problem is NPC

Example 2: Show that

Subset-Sum ≤T Set-Partition

Since Subset-Sum is known to be NPC, the above reduction implies that
Set-Partition is also NPC.

Subset-Sum decision problem:

Given a positive integer c, and a set S = {s1, s2, . . . , sn} of
positive integers si for i = 1, 2, . . . , n. Is there a J ⊆ {1, 2, . . . , n}

such that
∑
i∈J

si = c? assume that w =

n∑
i=1

si ≥ c.

Set-Partition decision problem:

Given a set S of numbers. Can S be partitioned into two sets A

and Ā = S −A such that
∑
x∈A

x =
∑
x∈Ā

x?

7 / 15



4. How to prove a problem is NPC

Example 2, cont’d

I Let S be an instance of Subset-Sum with w =
∑
si∈S

si and the target c.

I Define the set S′ (i.e., the transformation T from S to S′) as follows:

S′ = S ∪ {u, v}, where u = 2w − c, v = w + c.

I Next to show that

Yes of Subset-Sum of S ⇐⇒ Yes of Set-Partition of S′

8 / 15



4. How to prove a problem is NPC

Example 2, cont’d

=⇒ Let J ⊆ S and the elements in J sum to c. Then J ∪ {u} sum to 2w.
Note that the elements in J = S − J sum to w − c. Hence, J ∪ {v} also
sums to 2w. Therefore, S′ can be partioned into J ∪ {u} and J ∪ {v}
where both partitions sum to 2w. Thus, Yes of Subset-Sum transforms to a
Yes of Set-Partition.

9 / 15



4. How to prove a problem is NPC

Example 2, cont’d
⇐= Assume S′ can be partitioned into two sets, T and T = S′ − T , such
that ∑

x∈T
x =

∑
x∈T

x. (1)

Since w + u + v = 4w, the sum of the elements in both sets must be equal
to 2w. Therefore, u must be in one set and v must be in the other because
u + v = 3w. Without loss of generality, let u ∈ T . Then

2w =
∑
x∈T

x = u +
∑

x∈T−u
x = 2w − c +

∑
x∈T−u

x.

It implies that ∑
x∈T−u

x = c

Thus, Yes of Set-Partition transforms to Yes of Subset-Sum. 2

10 / 15



5. How to solve a NPC problem

Example 1: Bin Packing problem

Suppose we have an unlimited number of bins, each of capacity 1,
and n objects with sizes s1, s2, . . . , sn, where 0 < si ≤ 1.

I Optimization problem: Determine the smallest number of bins into
which objects can be packed and find an optimal packing.

I Decision problem: Do the objects fit in k bins?

Theorem. Bin Packing problem is NPC

Proof. reduced from the subset sum.

11 / 15



5. How to solve a NP-complete problem

Approximate algorithm for the Bin Packing

I First-fit strategy (greedy):

places an object in the first bin into which it fits.

I Example: Objects = {0.8, 0.5, 0.4, 0.4, 0.3, 0.2, 0.2, 0.2}
I First-fit strategy solution:

B1

0.2
0.8

B2

0.4
0.5

B3

0.2
0.3
0.4

B4

0.2

I Optimal packing:

B1

0.2
0.8

B2

0.2
0.3
0.5

B3

0.2
0.4
0.4

12 / 15



5. How to solve a NP-complete problem

Theorem. Let S =

n∑
i=1

si.

1. The optimal number of bins required is at least dSe
2. The number of bins used by the first-fit strategy is never more than
d2Se.

13 / 15



5. How to solve a NP-complete problem

The vertex-cover problem:

I A vertex-cover of an undirected graph G = (V,E) is a subset set of
V ′ ⊆ V such that if (u, v) ∈ E, then u ∈ V ′ (inclusive) or v ∈ V ′.

I In other words, each vertex “covers” its incident edges, and a vertex
cover for G is a set of vertices that covers all edges in E.

I The size of a vertex cover is the number of vertices in it.

I Decision problem: determine whether a graph has a vertex cover of a
given size k

I Optimization problem: find a vertex cover of minimum size.

I Theorem. The vertex-cover problem is NPC.

14 / 15



5. How to solve a NP-complete problem

The vertex-cover problem:

I An approximate algorithm
C = ∅
E′ = E
while E′ 6= ∅

let (u, v) be an arbitrary edge of E′

C = C ∪ {u, v}
remove from E′ every edge incident on either u or v.

endwhile
return C

I Theorem. The size of the vertex-cover is no more than twice the size
of an optimal vertex cover.

15 / 15


