
Review material for Midterm

I 9 Lecture notes from 4/4 to 4/25

I Chapters 1, 2, 3
Sections 4.1, 4.2, 4.5
Sections 16.1, 16.2, 16.4

I Problem sets 1, 2, 3 and 4

I Solutions of problem sets

1 / 11

Topics

1. Math and proof-technique reivew

2. Order of growth

3. Recurrence relations
I linear recurences, divide-and-conquer recurrences.
I Explicit substituion for solving simple recurrence relations
I The master theorem/method for DC recurrences

4. Divide-and-conquer algorithms

5. Greedy algorithms

2 / 11

1. Math and proof-technique review

Math

1. Set notation

2. Set of functions

3. Summation – see Appendix A.1

Arithmetic series:
n∑
i=1

i = 1 + 2 + · · ·+ n =?

Geometric series:
n∑
i=0

xi = 1 + x+ · · ·+ xn =?

Harmonic series:
n∑
i=1

1

i
= 1 +

1

2
· · ·+ 1

n
=?

4. Fibonacci numbers

5. Binomial coefficients

6. Floor and ceiling

7. Logarithm and exponential

8. L’Höpital’s rule

3 / 11

1. Math and proof-technique review

Proof-techniques
Proof by

I Definition (constructive existence)

I Induction

I Contradiction

I ...

4 / 11

2. Order of Growth

I Describe behaviors of functions in the limit ...

I Asymptotic definitions (notations)

I O(g(n)) = {f(n) : ∃ const. c, n0 s.t .0 ≤ f(n) ≤ cg(n) for alln ≥ n0}

I Ω(g(n)) = {f(n) : ∃ const. c, n0 s.t .0 ≤ cg(n) ≤ f(n) for alln ≥ n0}

I Θ(g(n)) = {f(n) : ∃ const. c1, c2, n0,
s.t 0 ≤ c1g(n) ≤ f(n) ≤ c2n for alln ≥ n0}

I Proof by definition

I Order of growth for frequently used functions:

lg n, . . . n, . . . , nk, , 2n

5 / 11

3. Recurrence relations

Types:

I Linear recurrences

T (n) = c1T (n− 1) + · · ·+ ckT (n− k) + f(n)

I Divide-and-conquer recurrences:

T (n) = a · T (n
b
) + f(n)

where a ≥ 1 and b > 1, and f(n) ≥ 0.

Methods to find the solution of a recurrence relation

I Direct iteration/substitution for simple recurrences.

I The master theorem/method for DC recurrences

6 / 11

3. Recurrence relations

The master theorem for solving DC recurrences:

I Case 1: If nlogb a is polynomially larger than f(n), i.e,

nlogb a

f(n)
= Ω(nε) for some const. ε > 0,

then T (n) = Θ(nlogb a)

I Case 2: If nlogb a and f(n) are on the same order, i.e.,

f(n)

nlogb a
= Θ(1),

then T (n) = Θ(nlogb a lg n)

I Case 3: If f(n) is polynomially greater than nlogb a, i.e.,

f(n)

nlogb a
= Ω(nε) for some const. ε > 0

and f(n) is regular, then T (n) = Θ(f(n))

7 / 11

4. Divide-and-conquer algorithms

Three-step:

I Divide the problem into a number of (independent) subproblems,

I Conquer the subproblems by solving them recursively,

I Combine the solutions to the subproblems into the solution of the
original problems.

8 / 11

4. Divide-and-conquer algorithms

Examples:

I Merge sort

I Max and Min

I Search for A[i] = i in an sorted array A

I Maximum subarray

I Strassen’s algorithm

I Closest pair in 1-D

I k-way merge problem

I Integer multiplication

9 / 11

5. Greedy algorithms

I A greedy algorithm always makes the choice that looks best at the
moment, without regard for future consequence
“take what you can get now” strategy

I The proof of the greedy algorithm producing the solution of maximum
size of compatible activities is based on the following two key
properties:

I The greedy-choice property
a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice.

I The optimal substructure property
an optimal solution to the problem contains within it optimal solution
to subprograms.

I Greedy algorithms do not always yield optimal solutions, but for many
problems they do.

10 / 11

5. Greedy algorithms

Examples:

1. Activity selection problems

2. Job scheduling (homework 4)

3. Huffman coding

4. 0-1 Knapsack problem

5. Money-change problem

11 / 11

