Review material for Midterm

- 9 Lecture notes from $4 / 4$ to $4 / 25$
- Chapters 1, 2, 3

Sections 4.1, 4.2, 4.5
Sections 16.1, 16.2, 16.4

- Problem sets 1, 2, 3 and 4
- Solutions of problem sets

Topics

1. Math and proof-technique reivew
2. Order of growth
3. Recurrence relations

- linear recurences, divide-and-conquer recurrences.
- Explicit substituion for solving simple recurrence relations
- The master theorem/method for DC recurrences

4. Divide-and-conquer algorithms
5. Greedy algorithms

1. Math and proof-technique review

Math

1. Set notation
2. Set of functions
3. Summation - see Appendix A. 1

Arithmetic series: $\sum_{i=1}^{n} i=1+2+\cdots+n=$?
Geometric series: $\sum_{i=0}^{n} x^{i}=1+x+\cdots+x^{n}=$?
Harmonic series: $\sum_{i=1}^{n} \frac{1}{i}=1+\frac{1}{2} \cdots+\frac{1}{n}=$?
4. Fibonacci numbers
5. Binomial coefficients
6. Floor and ceiling
7. Logarithm and exponential
8. L'Höpital's rule

1. Math and proof-technique review

Proof-techniques
Proof by

- Definition (constructive existence)
- Induction
- Contradiction

2. Order of Growth

- Describe behaviors of functions in the limit ...
- Asymptotic definitions (notations)
- $O(g(n))=\left\{f(n): \exists\right.$ const. c, n_{0} s.t. $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$
- $\Omega(g(n))=\left\{f(n): \exists\right.$ const. c, n_{0} s.t. $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$
- $\Theta(g(n))=\left\{f(n): \exists\right.$ const. c_{1}, c_{2}, n_{0},

$$
\text { s.t } \left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} n \text { for all } n \geq n_{0}\right\}
$$

- Proof by definition
- Order of growth for frequently used functions:

$$
\lg n, \ldots n, \ldots, n^{k}, \ldots \ldots, 2^{n}
$$

3. Recurrence relations

Types:

- Linear recurrences

$$
T(n)=c_{1} T(n-1)+\cdots+c_{k} T(n-k)+f(n)
$$

- Divide-and-conquer recurrences:

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)
$$

$$
\text { where } a \geq 1 \text { and } b>1, \text { and } f(n) \geq 0
$$

Methods to find the solution of a recurrence relation

- Direct iteration/substitution for simple recurrences.
- The master theorem/method for DC recurrences

3. Recurrence relations

The master theorem for solving DC recurrences:

- Case 1: If $n^{\log _{b} a}$ is polynomially larger than $f(n)$, i.e,

$$
\frac{n^{\log _{b} a}}{f(n)}=\Omega\left(n^{\epsilon}\right) \quad \text { for some const. } \epsilon>0
$$

then $T(n)=\Theta\left(n^{\log _{b} a}\right)$

- Case 2: If $n^{\log _{b} a}$ and $f(n)$ are on the same order, i.e.,

$$
\frac{f(n)}{n^{\log _{b} a}}=\Theta(1)
$$

then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$

- Case 3: If $f(n)$ is polynomially greater than $n^{\log _{b} a}$, i.e.,

$$
\frac{f(n)}{n^{\log _{b} a}}=\Omega\left(n^{\epsilon}\right) \quad \text { for some const. } \epsilon>0
$$

and $f(n)$ is regular, then $T(n)=\Theta(f(n))$

4. Divide-and-conquer algorithms

Three-step:

- Divide the problem into a number of (independent) subproblems,
- Conquer the subproblems by solving them recursively,
- Combine the solutions to the subproblems into the solution of the original problems.

4. Divide-and-conquer algorithms

Examples:

- Merge sort
- Max and Min
- Search for $A[i]=i$ in an sorted array A
- Maximum subarray
- Strassen's algorithm
- Closest pair in 1-D
- k-way merge problem
- Integer multiplication

5. Greedy algorithms

- A greedy algorithm always makes the choice that looks best at the moment, without regard for future consequence "take what you can get now" strategy
- The proof of the greedy algorithm producing the solution of maximum size of compatible activities is based on the following two key properties:
- The greedy-choice property
a globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- The optimal substructure property an optimal solution to the problem contains within it optimal solution to subprograms.
- Greedy algorithms do not always yield optimal solutions, but for many problems they do.

5. Greedy algorithms

Examples:

1. Activity selection problems
2. Job scheduling (homework 4)
3. Huffman coding
4. 0-1 Knapsack problem
5. Money-change problem
