
ECS122A Final Review

Before you begin, find the following material:

I Lecture notes/slides

I 8 problem sets (yes, including #8)

I Solutions of problem sets

I Solution of midterm

1 / 12



ECS122A Final Review

Here is high-level organization of what we have learned:

I. Basics and tools of trade

II. Three algorithm design techniques

III. Graph algorithms

IV. NP-completeness – a brief introduction

2 / 12



I. Basics and tools of trade

1. Order of growth
I O,Ω,Θ definitions
I proof by definition

2. Recurrence relations
I Linear recurrence relations
I Divide and conquer recurrence relations

3. Solving the recurrence relations
I Direct substitution
I The master theorem/method for solving the DC recurrence relations

3 / 12



I. Basics and tools of trade

4. Graph terminology and representations

I graph, path, connected graph, connected component, cycle, acyclic,
tree, spanning tree, sink, ...

I adjacency list, adjacency matrix, incidence matrix.

5. Data structures

I FIFO queue:
enqueue, dequeue

I LIFO stack
I Priority queue:

Insert(S,x), Extract-Min(S), Decrease-Key(S,x,k), ...
I Disjoint-set:

Make-set(x), Union(x,y), Find-set(x)

4 / 12



II. Algorithm design techniques

Divide and Conquer algorithms

I Three steps:
I Divide the problem into a number of independent subproblems;
I Conquer subproblems by solving them recursively;1

I Combine the solutions to the subproblems into the solution of the
original problem

I Examples:

1. Merge sort (vs. Insert sort)
2. The maximum and minimum values
3. The maximum subarray
4. Strassen’s algorithm for matrix-matrix multiplication
5. the closest pair of points in one dimension.
6. Searching for index i such that A[i] = i in a sorted array A
7. Integer multiplication
8. k-way merge operation

1If the subproblem sizes are small enough, however, just solve them in a
straightforward manner.

5 / 12



II. Algorithm design techniques

Divide and Conquer algorithms

I Three steps:
I Divide the problem into a number of independent subproblems;
I Conquer subproblems by solving them recursively;1

I Combine the solutions to the subproblems into the solution of the
original problem

I Examples:

1. Merge sort (vs. Insert sort)
2. The maximum and minimum values
3. The maximum subarray
4. Strassen’s algorithm for matrix-matrix multiplication
5. the closest pair of points in one dimension.
6. Searching for index i such that A[i] = i in a sorted array A
7. Integer multiplication
8. k-way merge operation

1If the subproblem sizes are small enough, however, just solve them in a
straightforward manner.

5 / 12



II. Algorithm design techniques

Divide and Conquer algorithms

I Three steps:
I Divide the problem into a number of independent subproblems;
I Conquer subproblems by solving them recursively;1

I Combine the solutions to the subproblems into the solution of the
original problem

I Examples:

1. Merge sort (vs. Insert sort)
2. The maximum and minimum values
3. The maximum subarray
4. Strassen’s algorithm for matrix-matrix multiplication
5. the closest pair of points in one dimension.
6. Searching for index i such that A[i] = i in a sorted array A
7. Integer multiplication
8. k-way merge operation

1If the subproblem sizes are small enough, however, just solve them in a
straightforward manner.

5 / 12



II. Algorithm design techniques

Greedy Algorithms

I Two key elements:

I The greedy-choice property: a globally optimal solution can be
arrived at by making a locally optimal (greedy) choice.

I The optimal substructure property: an optimal solution to the
problem contains within it optimal solution to subproblems.

I Examples (greedy works)

1. Activity selection
2. Huffman coding (data compression)
3. Job scheduling – minimizing the average completion time
4. MST (a graph algorithm)

I Examples that greedy does not works

1. Knapsack problem
2. Money changing

6 / 12



II. Algorithm design techniques

Greedy Algorithms

I Two key elements:

I The greedy-choice property: a globally optimal solution can be
arrived at by making a locally optimal (greedy) choice.

I The optimal substructure property: an optimal solution to the
problem contains within it optimal solution to subproblems.

I Examples (greedy works)

1. Activity selection
2. Huffman coding (data compression)
3. Job scheduling – minimizing the average completion time
4. MST (a graph algorithm)

I Examples that greedy does not works

1. Knapsack problem
2. Money changing

6 / 12



II. Algorithm design techniques

Greedy Algorithms

I Two key elements:

I The greedy-choice property: a globally optimal solution can be
arrived at by making a locally optimal (greedy) choice.

I The optimal substructure property: an optimal solution to the
problem contains within it optimal solution to subproblems.

I Examples (greedy works)

1. Activity selection
2. Huffman coding (data compression)
3. Job scheduling – minimizing the average completion time
4. MST (a graph algorithm)

I Examples that greedy does not works

1. Knapsack problem
2. Money changing

6 / 12



II. Algorithm design techniques

Greedy Algorithms

I Two key elements:

I The greedy-choice property: a globally optimal solution can be
arrived at by making a locally optimal (greedy) choice.

I The optimal substructure property: an optimal solution to the
problem contains within it optimal solution to subproblems.

I Examples (greedy works)

1. Activity selection
2. Huffman coding (data compression)
3. Job scheduling – minimizing the average completion time
4. MST (a graph algorithm)

I Examples that greedy does not works

1. Knapsack problem
2. Money changing

6 / 12



II. Algorithm design techniques

Dynamic Programming

I Three key elements:

I The optimal substructure: the optimal solution to the problem
contains optimal solutions to subproblems ⇒ “recursion”.

I Overlapping subproblems: There are few subproblems in total, and
many recurring instances of each.2

I Memoization: after computing solutions to subproblems, store in
table, subsequent calls do table lookup.

I Examples:

1. Rod cutting
2. Matrix-chain multiplication
3. Longest common subsequence/substring
4. Edit distance
5. Knapsack problem
6. Change-making problem

2Unlike divide-and-conquer, where subproblems are independent.
7 / 12



II. Algorithm design techniques

Dynamic Programming

I Three key elements:

I The optimal substructure: the optimal solution to the problem
contains optimal solutions to subproblems ⇒ “recursion”.

I Overlapping subproblems: There are few subproblems in total, and
many recurring instances of each.2

I Memoization: after computing solutions to subproblems, store in
table, subsequent calls do table lookup.

I Examples:

1. Rod cutting
2. Matrix-chain multiplication
3. Longest common subsequence/substring
4. Edit distance
5. Knapsack problem
6. Change-making problem

2Unlike divide-and-conquer, where subproblems are independent.
7 / 12



II. Algorithm design techniques

Dynamic Programming

I Three key elements:

I The optimal substructure: the optimal solution to the problem
contains optimal solutions to subproblems ⇒ “recursion”.

I Overlapping subproblems: There are few subproblems in total, and
many recurring instances of each.2

I Memoization: after computing solutions to subproblems, store in
table, subsequent calls do table lookup.

I Examples:

1. Rod cutting
2. Matrix-chain multiplication
3. Longest common subsequence/substring
4. Edit distance
5. Knapsack problem
6. Change-making problem

2Unlike divide-and-conquer, where subproblems are independent.
7 / 12



III. Graph algorithms

I Elementrary graph algorithms

I Breadth-first search (BFS):
I/O, FIFO queue, complexity

I Depth-first search (DFS):
I/O, LIFO stack, complexity

I Applications of BFS and DFS

1. sorting a dag
2. determining cycle
3. finding a sink
4. finding connected components

Make sure to know how to precisely (correctly) illustrate BFS and DFS

8 / 12



III. Graph algorithms

I Elementrary graph algorithms

I Breadth-first search (BFS):
I/O, FIFO queue, complexity

I Depth-first search (DFS):
I/O, LIFO stack, complexity

I Applications of BFS and DFS

1. sorting a dag
2. determining cycle
3. finding a sink
4. finding connected components

Make sure to know how to precisely (correctly) illustrate BFS and DFS

8 / 12



III. Graph algorithms

I Elementrary graph algorithms

I Breadth-first search (BFS):
I/O, FIFO queue, complexity

I Depth-first search (DFS):
I/O, LIFO stack, complexity

I Applications of BFS and DFS

1. sorting a dag
2. determining cycle
3. finding a sink
4. finding connected components

Make sure to know how to precisely (correctly) illustrate BFS and DFS

8 / 12



III Graph algorithms

I Minimum Spanning Tree (MST)

I Prim’s algorithm:
priority queue, complexity

I Kruskal’s algorithm: disjoint-set, complexity
priority queue, complexity

Make sure to know how to precisely (correctly) illustrate Prim and Kruskal
algorithms.

9 / 12



III Graph algorithms

I Shortest paths (single-source)

I Bellman-Ford algorithm
dynamic programming-like, multiple passes

I Dijkstra’s algorithm
greedy, priority queue

I Bellman-Ford algorithm for DAG
only need a single pass after TS

Make sure to know how to precisely (correctly) illustrate these algorithms.

10 / 12



IV. NP-completeness – a brief introduction

1. Tractable and intractable problems

2. Optimization problem versus decision problem

3. Polynomial transformation and reduction

4. Formal definitions: P, NP, NP-complete, NP-hard

5. Examples of NPC problems:

5.1 Circuit-satisfiability (SAT),
5.2 Graph-coloring,
5.3 Hamiltonian-cycle (HC),
5.4 Traveling-salesperson-problem (TSP),
5.5 Knapsack-problem,
5.6 Prime-testing,
5.7 Subset-sum,
5.8 Set-partition,
5.9 Bin-packing,

5.10 Vertex-cover,
5.11 Clique problem.

11 / 12



IV. NP-completeness – a brief introduction

1. Tractable and intractable problems

2. Optimization problem versus decision problem

3. Polynomial transformation and reduction

4. Formal definitions: P, NP, NP-complete, NP-hard

5. Examples of NPC problems:

5.1 Circuit-satisfiability (SAT),
5.2 Graph-coloring,
5.3 Hamiltonian-cycle (HC),
5.4 Traveling-salesperson-problem (TSP),
5.5 Knapsack-problem,
5.6 Prime-testing,
5.7 Subset-sum,
5.8 Set-partition,
5.9 Bin-packing,

5.10 Vertex-cover,
5.11 Clique problem.

11 / 12



IV. NP-completeness – brief introduction

6. How to prove a problem is NP-completeness
I Proof structure and logic

(1) ...
(2) Step A: ...

Step B: ...

I Examples:

6.1 Directed HC ≤T Undirected HC
6.2 3-Color ≤T 4-Color

12 / 12



IV. NP-completeness – brief introduction

6. How to prove a problem is NP-completeness
I Proof structure and logic

(1) ...
(2) Step A: ...

Step B: ...

I Examples:

6.1 Directed HC ≤T Undirected HC
6.2 3-Color ≤T 4-Color

12 / 12



Good luck. Finish Strong

13 / 12


