< □ > < 部 > < 書 > < 書 > 差 > うへで 2/11

 Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Developed back in the day (1950s) when "programming" meant "tabular method" (like linear programming)

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Developed back in the day (1950s) when "programming" meant "tabular method" (like linear programming)
- Used for optimization problems
 - Find a solution with the optimal value
 - Minimization or maximization

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution

Four-step (two-phase) method:

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution

Four-step (two-phase) method:

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion

Four-step (two-phase) method:

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed information

Problem statement:

- ► Input:
 - 1) a rod of length n
 - 2) an array of prices p_i for a rod of length i for i = 1, ..., n.

Problem statement:

- ► Input:
 - 1) a rod of length n
 - 2) an array of prices p_i for a rod of length i for i = 1, ..., n.

Output:

- 1) the maximum revenue r_n obtainable for a rod of length n
- 2) optimal cut, if necessary.

Problem statement:

- ► Input:
 - 1) a rod of length n
 - 2) an array of prices p_i for a rod of length i for i = 1, ..., n.

► Output:

- 1) the maximum revenue r_n obtainable for a rod of length n
- 2) optimal cut, if necessary.

In short,

How to cut a rod into pieces in order to maximize the revenue you can get?

Example

Example

rod length i	$\parallel 1$	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30
r_i	1	5	8	10	13	17	18 1	22	25	30
s_i	1	2	3	2	2	6	1	2	3	10

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

5/11

- r_i : maximum revenue of a rod of length i
- s_i: optimal size of the first piece to cut

A brute-force solution:

cut up a rod of length n in 2^{n-1} different ways

A brute-force solution:

cut up a rod of length n in 2^{n-1} different ways

Cost: $\Theta(2^{n-1})$

Dynamic Programming – Phase I:

• Since every optimal solution r_n has a leftmost cut with length i, the optimal revenue r_n is given by

$$r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, \dots, p_{n-1} + r_{1}, p_{n} + r_{0}\}$$

=
$$\max_{1 \le i \le n} \{p_{i} + r_{n-i}\}$$
 (1)

Dynamic Programming – Phase I:

Since every optimal solution r_n has a leftmost cut with length i, the optimal revenue r_n is given by

$$r_{n} = \max\{p_{1} + r_{n-1}, p_{2} + r_{n-2}, \dots, p_{n-1} + r_{1}, p_{n} + r_{0}\}$$

$$= \max_{1 \le i \le n} \{p_{i} + r_{n-i}\}$$
(1)
$$= p_{i_{*}} + r_{n-i_{*}}$$
(2)

where

- i_* = the index attains the maximum
 - = the length of the leftmost cut

Dynamic Programming - Phase II:

- How to compute r_n by the expression (1)
 - Recursive solution:
 - top-down, no memoization
 - Calling graph

Dynamic Programming – Phase II:

- How to compute r_n by the expression (1)
 - Recursive solution:
 - top-down, no memoization
 - Calling graph

• Cost: let T(n) be the number of calls to compute r_n ; then

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = \Theta(2^n) \quad \text{for } n > 1$$

and T(0) = 1.

Dynamic Programming – Phase II:

- How to compute r_n by the expression (1), cont'd
 - Iterative solution
 - bottom-up, memoization (Pseudocode see next page)
 - Calling graph

Dynamic Programming – Phase II:

- How to compute r_n by the expression (1), cont'd
 - Iterative solution
 - bottom-up, memoization (Pseudocode see next page)
 - Calling graph

• Cost:
$$T(n) = \Theta(n^2)$$

```
cut-rod(p,n)
// an iterative (bottom-up) procedure for finding ''r'' and
// the optimal size of the first piece to cut off ''s''
Let r[0...n] and s[0...n] be new arrays
r[0] = 0
for j = 1 to n
    // find q = max{p[i]+r[j-i]} for 1 <= i <= j</pre>
    q = -infty
    for i = 1 to j
        if q < p[i] + r[j-i]
           q = p[i] + r[j-i]
           s[j] = i
        end if
    end for
    r[j] = q
end for
return r and s
```

Example

rod length i	1	2	3	4	5	6	7	8	9	10
rod length i price p_i	1	5	8	9	10	17	17	20	24	30
r_i	1	5	8	10	13	17	18	22	25	30 10
s_i	1	2	3	2	2	6	1	2	3	10

イロト (部) (日) (日) (日) (日)

- r_i: maximum revenue of a rod of length i
- ▶ s_i: optimal size of the first piece to cut Note: s_i = i_{*} in expression (2).