VI. Dynamic Programming

Dynamic Programming - Overview

Dynamic Programming - Overview

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)

Dynamic Programming - Overview

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Developed back in the day (1950s) when "programming" meant "tabular method" (like linear programming)

Dynamic Programming - Overview

- Not a specific algorithm, but a technique (like Divide-and-Conquer and Greedy algorithms)
- Developed back in the day (1950s) when "programming" meant "tabular method" (like linear programming)
- Used for optimization problems
- Find a solution with the optimal value
- Minimization or maximization

Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution

Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion

Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

The rod cutting problem

Problem statement:

- Input:

1) a rod of length n
2) an array of prices p_{i} for a rod of length i for $i=1, \ldots, n$.

The rod cutting problem

Problem statement:

- Input:

1) a rod of length n
2) an array of prices p_{i} for a rod of length i for $i=1, \ldots, n$.

- Output:

1) the maximum revenue r_{n} obtainable for a rod of length n
2) optimal cut, if necessary.

The rod cutting problem

Problem statement:

- Input:

1) a rod of length n
2) an array of prices p_{i} for a rod of length i for $i=1, \ldots, n$.

- Output:

1) the maximum revenue r_{n} obtainable for a rod of length n
2) optimal cut, if necessary.

In short,
How to cut a rod into pieces in order to maximize the revenue you can get?

The rod cutting problem

Example

rod length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30

The rod cutting problem

Example

rod length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30
r_{i}	1	5	8	10	13	17	18	22	25	30
s_{i}	1	2	3	2	2	6	1	2	3	10

- r_{i} : maximum revenue of a rod of length i
- s_{i} : optimal size of the first piece to cut

The rod cutting problem

A brute-force solution:
cut up a rod of length n in 2^{n-1} different ways

The rod cutting problem

A brute-force solution:
cut up a rod of length n in 2^{n-1} different ways

Cost: $\Theta\left(2^{n-1}\right)$

The rod cutting problem

Dynamic Programming - Phase I:

- Since every optimal solution r_{n} has a leftmost cut with length i, the optimal revenue r_{n} is given by

$$
\begin{align*}
r_{n} & =\max \left\{p_{1}+r_{n-1}, p_{2}+r_{n-2}, \ldots, p_{n-1}+r_{1}, p_{n}+r_{0}\right\} \\
& =\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \tag{1}
\end{align*}
$$

The rod cutting problem

Dynamic Programming - Phase I:

- Since every optimal solution r_{n} has a leftmost cut with length i, the optimal revenue r_{n} is given by

$$
\begin{align*}
r_{n} & =\max \left\{p_{1}+r_{n-1}, p_{2}+r_{n-2}, \ldots, p_{n-1}+r_{1}, p_{n}+r_{0}\right\} \\
& =\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \tag{1}\\
& =p_{i_{*}}+r_{n-i_{*}} \tag{2}
\end{align*}
$$

where
$i_{*}=$ the index attains the maximum
$=$ the length of the leftmost cut

The rod cutting problem

Dynamic Programming - Phase II:

- How to compute r_{n} by the expression (1)
- Recursive solution:
- top-down, no memoization
- Calling graph

The rod cutting problem

Dynamic Programming - Phase II:

- How to compute r_{n} by the expression (1)
- Recursive solution:
- top-down, no memoization
- Calling graph

- Cost: let $T(n)$ be the number of calls to compute r_{n}; then

$$
T(n)=1+\sum_{j=0}^{n-1} T(j)=\Theta\left(2^{n}\right) \quad \text { for } n>1
$$

and $T(0)=1$.

The rod cutting problem

Dynamic Programming - Phase II:

- How to compute r_{n} by the expression (1), cont'd
- Iterative solution
- bottom-up, memoization (Pseudocode - see next page)
- Calling graph

The rod cutting problem

Dynamic Programming - Phase II:

- How to compute r_{n} by the expression (1), cont'd
- Iterative solution
- bottom-up, memoization (Pseudocode - see next page)
- Calling graph

- Cost: $T(n)=\Theta\left(n^{2}\right)$

The rod cutting problem

```
cut-rod(p,n)
// an iterative (bottom-up) procedure for finding ' 'r') and
// the optimal size of the first piece to cut off ''s',
Let r[0...n] and s[0...n] be new arrays
r[0] = 0
for j = 1 to n
    // find q = max{p[i]+r[j-i]} for 1 <= i <= j
    q = -infty
    for i = 1 to j
        if q < p[i] + r[j-i]
            q = p[i] +r[j-i]
            s[j] = i
        end if
    end for
    r[j] = q
end for
return r and s
```


The rod cutting problem

Example

rod length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30
r_{i}	1	5	8	10	13	17	18	22	25	30
s_{i}	1	2	3	2	2	6	1	2	3	10

- r_{i} : maximum revenue of a rod of length i
- s_{i} : optimal size of the first piece to cut Note: $s_{i}=i_{*}$ in expression (2).

