
VI. Dynamic Programming
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Dynamic Programming – Overview

I Not a specific algorithm, but a technique (like Divide-and-Conquer and
Greedy algorithms)

I Developed back in the day (1950s) when “programming” meant
“tabular method” (like linear programming)

I Used for optimization problems

I Find a solution with the optimal value
I Minimization or maximization
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Dynamic Programming

Four-step (two-phase) method:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution in a bottom-up fashion

4. Construct an optimal solution from computed information
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The rod cutting problem

Problem statement:

I Input:

1) a rod of length n
2) an array of prices pi for a rod of length i for i = 1, . . . , n.

I Output:

1) the maximum revenue rn obtainable for a rod of length n
2) optimal cut, if necessary.

In short,

How to cut a rod into pieces in order to maximize the revenue
you can get?
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The rod cutting problem

Example

rod length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

ri 1 5 8 10 13 17 18 22 25 30
si 1 2 3 2 2 6 1 2 3 10

I ri: maximum revenue of a rod of length i

I si: optimal size of the first piece to cut
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The rod cutting problem

A brute-force solution:

cut up a rod of length n in 2n−1 different ways

Cost: Θ(2n−1)
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The rod cutting problem

Dynamic Programming – Phase I:

I Since every optimal solution rn has a leftmost cut with length i, the
optimal revenue rn is given by

rn = max{p1 + rn−1, p2 + rn−2, . . . , pn−1 + r1, pn + r0}
= max

1≤i≤n
{pi + rn−i} (1)

= pi∗ + rn−i∗ (2)

where

i∗ = the index attains the maximum

= the length of the leftmost cut

7 / 11



The rod cutting problem

Dynamic Programming – Phase I:

I Since every optimal solution rn has a leftmost cut with length i, the
optimal revenue rn is given by

rn = max{p1 + rn−1, p2 + rn−2, . . . , pn−1 + r1, pn + r0}
= max

1≤i≤n
{pi + rn−i} (1)

= pi∗ + rn−i∗ (2)

where

i∗ = the index attains the maximum

= the length of the leftmost cut

7 / 11



The rod cutting problem

Dynamic Programming – Phase II:

I How to compute rn by the expression (1)
I Recursive solution:

I top-down, no memoization
I Calling graph

I Cost: let T (n) be the number of calls to compute rn; then

T (n) = 1 +

n−1∑
j=0

T (j) = Θ(2n) for n > 1

and T (0) = 1.
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The rod cutting problem

Dynamic Programming – Phase II:

I How to compute rn by the expression (1), cont’d
I Iterative solution

I bottom-up, memoization (Pseudocode – see next page)
I Calling graph

I Cost: T (n) = Θ(n2)
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The rod cutting problem
cut-rod(p,n)

// an iterative (bottom-up) procedure for finding ‘‘r’’ and

// the optimal size of the first piece to cut off ‘‘s’’

Let r[0...n] and s[0...n] be new arrays

r[0] = 0

for j = 1 to n

// find q = max{p[i]+r[j-i]} for 1 <= i <= j

q = -infty

for i = 1 to j

if q < p[i] + r[j-i]

q = p[i] + r[j-i]

s[j] = i

end if

end for

r[j] = q

end for

return r and s
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The rod cutting problem

Example

rod length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

ri 1 5 8 10 13 17 18 22 25 30
si 1 2 3 2 2 6 1 2 3 10

I ri: maximum revenue of a rod of length i

I si: optimal size of the first piece to cut
Note: si = i∗ in expression (2).
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