
Shortest paths

I Generalization of BFS to handle weighted graphs

I Directed weighted graph G = (V,E,w)

I Weight function w : E −→ R

I Weight of path p = v0 → v1 → · · · → vk

w(p) =

k∑
i=1

w(vi−1, vi)

I Shortest-path weight u; v

δ(u, v) =

{
min{w(p) : u; v} if there exists a path p = u; v
∞ otherwise

I Shortest-path u; v
any path p such that w(p) = δ(u, v)

1 / 7



Shortest paths

I Single-source shortest path problem (SSSP):

find shortest-paths from a given source vertex s ∈ V to every
vertex v ∈ V

I Most basic SSSP algorithm: Bellman-Ford algorithm (discussed next)

I Variants:
I Single-destination: find shortest-paths to a given destination vertex

(reverse the direction of each edge to become the single-source
problem)

I Single-pair: find shortest-path from u to v
(no way know that’s better in worst case than solving single-source)

I All-pairs: find shortest-paths from u to v for all u, v ∈ V .
(By running Bellman-Ford once for each vertex, cost O(V 2E) = O(V 4)
on dense graph. Can do better, see Chapter 25 of CLRS, 3ed)

2 / 7



Shortest paths

Well-definedness

I Negative-weight edges are OK, as long as no negative-weight cycles
reachable from the source. Otherwise, can always get a shorter path
by going around the cycle again.

I The shortest path problem is ill-posed in graph with negative-weight
cycle

I Bellman-Ford algorithm can detect and report the existence of
negative-weight cycle

3 / 7



Shortest paths

I Optimal substructure property of SSSP:

subpaths of shortest-paths are shortest-paths.

Proof. If some subpath were not a shortest path, could substitute it
and create a shorter total path.

I Thus, will see greedy and dynamical programming algorithms.

4 / 7



Shortest paths

I Notation: d[v]: shortest-path estimate
π[v]: predecessor of v

I Output of SSSP algorithms

d[v] = δ(s, v) = shortest-path weight s; v
π[v] = predecessor of v on a shortest path from s.

5 / 7



Shortest paths

Two key components of shortest-path algorithms:

I Initialization

for every vertex v in V

d[v] = infty

pi[v] = nil

endfor

d[s] = 0 // s = source vertex

I Relaxing an edge (u, v)

can we improve the shortest-path estimate d[v] by going
through u and taking the edge (u, v)?

if d[v] > d[u] + w(u,v)

d[v] = d[u] + w(u,v)

pi[v] = u

endif

6 / 7



Shortest paths

Basic properties:

1. Triangular inequality
for all (u, v) ∈ E, δ(u, v) ≤ δ(u, x) + δ(x, v)

2. Upper-bound property
Always have d[v] ≥ δ(s, v) for all v.
Once d[v] = δ(s, v), it never changes

3. No-path property
If δ(s, v) =∞, then d[v] =∞ always

4. Convergence property
If s; u→ v is a shortest-path, and d[u] = δ(s, u). Then after “Relax
u→ v”, d[v] = δ(s, v)

5. Path relaxation property
Let p = v0 → v1 → · · · → vk be a shortest-path. If we relax in order,
(v0, v1), (v1, v2), . . . , (vk−1, vk), even intermixed with other
relaxations, then d[vk] = δ(v0, vk)

7 / 7


