Matrix-matrix multiplication

- Problem:

Given $n \times n$ matrices A and B, compute the product $C=A \cdot B$.

- Traditional method: (i, j, k)-triple-loop

$$
\begin{aligned}
& \text { for } i= 1 \text { to } n \\
& \text { for } j=1 \text { to } n \\
& C(i, j)=0 \\
& \text { for } k=1: n \\
& C(i, j)=C(i, j)+A(i, k) * B(k, j) \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

- Complexity:

$$
T(n)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left(\sum_{k=1}^{n} 2\right)\right)=2 n^{3}=\Theta\left(n^{3}\right)
$$

Matrix-matrix multiplication

- Divide-and-conquer: a naive implementation

1. partition and then direct block multiplication

$$
\begin{aligned}
C & =\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
\end{aligned}
$$

2. Complexity:

$$
T(n)=8 \cdot T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)
$$

Same cost as the traditional method, No improvement

Matrix-matrix multiplication

- Strassen's divide-and-conquer method (Strassen's method): reduces the complexity to

$$
T(n)=\Theta\left(n^{\lg 7}\right) \approx \Theta\left(n^{2.8074}\right)
$$

- Reference:
V. Strassen, Gaussian elimination is not optimal. Numer. Math. Vol.13, pp.354-356, 1969
- The subsequent improvements, with the current world record being $O\left(n^{2.37}\right)$, are much more complicated (and astonishing), but less practical.

Matrix-matrix multiplication

- Strassen's method - Step 1: Divide

$$
A=\begin{aligned}
& \frac{n}{2} \\
& \frac{n}{2}
\end{aligned}\left[\begin{array}{cc}
\frac{n}{2} & \frac{n}{2} \\
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad \text { and } \quad B=\frac{n}{2} \quad\left[\begin{array}{cc}
\frac{n}{2} & \frac{n}{2} \\
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Matrix-matrix multiplication

- Strassen's method - Step 2: Compute 10 matrices by \pm only:

$$
\begin{aligned}
S_{1} & =B_{12}-B_{22} \\
S_{2} & =A_{11}+A_{12} \\
S_{3} & =A_{21}+A_{22} \\
S_{4} & =B_{21}-B_{11} \\
S_{5} & =A_{11}+A_{22} \\
S_{6} & =B_{11}+B_{22} \\
S_{7} & =A_{12}-A_{22} \\
S_{8} & =B_{21}+B_{22} \\
S_{9} & =A_{11}-A_{21} \\
S_{10} & =B_{11}+B_{12}
\end{aligned}
$$

Matrix-matrix multiplication

- Strassen's method - Step 3: Compute 7 matrices by multiplication:

$$
\begin{aligned}
& P_{1}=A_{11} \cdot S_{1} \\
& P_{2}=S_{2} \cdot B_{22} \\
& P_{3}=S_{3} \cdot B_{11} \\
& P_{4}=A_{22} \cdot S_{4} \\
& P_{5}=S_{5} \cdot S_{6} \\
& P_{6}=S_{7} \cdot S_{8} \\
& P_{7}=S_{9} \cdot S_{10}
\end{aligned}
$$

Matrix-matrix multiplication

- Strassen's method - Step 4: Add and subtract the P_{i} to construct submatrices $C_{i j}$ of the product $C=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]$:

$$
\begin{aligned}
& C_{11}=P_{5}+P_{4}-P_{2}+P_{6} \\
& C_{12}=P_{1}+P_{2} \\
& C_{21}=P_{3}+P_{4} \\
& C_{22}=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

Matrix-matrix multiplication

- Correctness: straightfoward verification
- Strassen's method - complexity

$$
T(n)=7 \cdot T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{\lg 7}\right)
$$

