Edit distance

» An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.



Edit distance

» An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.
example: alignments of “SNOWY” and “SUNNY”:
S-nowy -snow-y
sunn-y sun--ny

“won

indicates a “gap”



Edit distance

» An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.
example: alignments of “SNOWY” and “SUNNY”:
S-nowy -snow-y
sunn-y sun--ny

“won

indicates a “gap”

» The cost of an alignment is the number of columns in which the
letters differ.



Edit distance

» An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.
example: alignments of “SNOWY” and “SUNNY”:
S-nowy -snow-y
sunn-y sun--ny

“won

indicates a “gap”

» The cost of an alignment is the number of columns in which the
letters differ.
example: alignments of “SNOWY” and “SUNNY”:
S-nowy -snow-y
sunn-y sun--ny
cost = 3 cost = 5



Edit distance

» An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.
example: alignments of “SNOWY” and “SUNNY”:
S-nowy -snow-y
sunn-y sun--ny
“~" indicates a “gap”
» The cost of an alignment is the number of columns in which the
letters differ.
example: alignments of “SNOWY” and “SUNNY”:

S-nowy -snow-y
sunn-y sun--ny
cost = 3 cost = 5

» Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment



Edit distance

» An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.
example: alignments of “SNOWY” and “SUNNY”:
S-nowy -snow-y
sunn-y sun--ny

“won

indicates a “gap”

» The cost of an alignment is the number of columns in which the
letters differ.
example: alignments of “SNOWY” and “SUNNY”:

S-nowy -snow-y
sunn-y sun--ny
cost = 3 cost = 5

» Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

» Edit distance is the minimum number of edits — insertions, deletions
and substitutions of characters — need to transform the first string into
the second.



Edit distance

» An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.
example: alignments of “SNOWY” and “SUNNY”:
S-nowy -snow-y
sunn-y sun--ny
“~" indicates a “gap”
» The cost of an alignment is the number of columns in which the
letters differ.
example: alignments of “SNOWY” and “SUNNY”:

S-nowy -snow-y
sunn-y sun--ny
cost = 3 cost = 5

» Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

» Edit distance is the minimum number of edits — insertions, deletions
and substitutions of characters — need to transform the first string into
the second. e.g. a spell checker.



Edit distance

» Given strings z[1---m] and y[1---n].



Edit distance
> Given strings z[1---m] and y[1---n]. Define

e(m,n) = the edit distance between x and y



Edit distance
> Given strings z[1---m] and y[1---n]. Define
e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently



Edit distance
> Given strings z[1---m] and y[1---n]. Define
e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

» Subproblem:



Edit distance
> Given strings z[1---m] and y[1---n]. Define
e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently
» Subproblem:
edit distance e(i, j) between x[1---4] and y[1- - J]



Edit distance
> Given strings z[1---m] and y[1---n]. Define
e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently
» Subproblem:
edit distance e(i, j) between x[1---4] and y[1- - J]

> How to express e(i, j) in terms of its subproblems, recursively?



Edit distance
> Given strings z[1---m] and y[1---n]. Define
e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently
» Subproblem:
edit distance e(i, j) between x[1---4] and y[1- - J]

> How to express e(i, j) in terms of its subproblems, recursively?

» key observation: the rightmost column of an alignment of z[1---

and y[1---j] can only be one of the following three cases:

Case 1 Case 2 Case 3

xli] or _ or xli]

- yljl ylil



Edit distance
> By the above key observation, then

6(7’73) = mln{l—i—e(z - 17j)7 1+6(l7.7 - 1)7 dlﬁ(l7j) +€(Z - 17] - 1)}

case 1 case 2 case 3

where

s 0 ifz[i] = y[j]
dﬂ(z,]){ 1 if zfi] # y[j]

» Question: how to find the corresponding optimal alignment?



Edit distance

> The answers to all the subproblems ¢(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m, n).

5



Edit distance

> The answers to all the subproblems ¢(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m, n).
> Initialization:
€(0,0) = 0;
e(i,0) =ifori=1,...,m

e(0,j)=gjforj=1,...,n

5



Edit distance

> The answers to all the subproblems ¢(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m, n).
> Initialization:

e(0,0) = 0;
e(i,0) =ifori=1,...,m

e(0,j)=gjforj=1,...,n

» Pseudocode

5



Edit distance

> The answers to all the subproblems ¢(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m, n).
> Initialization:
€(0,0) = 0;
e(i,0) =ifori=1,...,m

e(0,j)=gjforj=1,...,n

» Pseudocode
» Example 1. = = 'snowy’, y = 'sunny’

5



Edit distance

> The answers to all the subproblems ¢(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m, n).
> Initialization:
€(0,0) = 0;
e(i,0) =ifori=1,...,m

e(0,j)=gjforj=1,...,n

» Pseudocode
» Example 1. = = 'snowy’, y = 'sunny’

S u n n vy

0 1 2 3 4 5
s|1 0 1 2 3 4
n|2 1 1 1 2 3
o|3 2 2 2 2 3
wl(4 3 3 3 3 3
y|5 4 4 4 4 3




Edit distance

> The answers to all the subproblems ¢(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m, n).
> Initialization:
€(0,0) = 0;
e(i,0) =ifori=1,...,m

e(0,j)=gjforj=1,...,n

» Pseudocode
» Example 1. = = 'snowy’, y = 'sunny’

s u n n vy
0 1 2 3 4 5
s|1 0 1 2 3 4
nl2 1 1 1 2 3
o|3 2 2 2 2 3
w|l4 3 3 3 3 3
y|5 4 4 4 4 3
Therefore, the edit distance between = and y = e(5,5) = 3.



Edit distance

Example 2. z = 'heroically’, y = 'scholarly’

5



Edit distance

Example 2. z = 'heroically’, y = 'scholarly’

5 6 7 8 9

2 3 4

2 2 3 4 5 6 7 8
2 3 3 4 5 6 7 8

3 3 4 4 5 5 6 7

1
2
3
4
5
6

4 4 3 4 5 6 6 7

4

5 5 4 4 5 6 7 7

5 6 5 5 5 6 7 8

6 6 6 6 5 6 7 8

7

7 6 6 6 6 7
8 8 8 v 7 7 6 7
10 9 9 9 8 8 8 7 6

7

9

10

y

5



Edit distance

Example 2. z = 'heroically’, y = 'scholarly’

6 7 8 9
2 2 3 4 5 6 7 8
2 3 3 4 5 6 7 8
3 3 4 4 5 5 6 7

5

2 3 4

1
2
3
4
5

4 4 3 4 5 6 6 7

4

5 5 4 4 5 6 7 7

5 5 6 7 8
6 6 6 6 5 6 7 8

5 6 5

7

7 6 6 6 6 7
8 8 8 v 7 7 6 7
10 9 9 9 8 8 8 7 6

7

9

10

y

=6

Therefore, the edit distance between = and y = (10, 9)

5



Edit distance

Example 2. z = 'heroically’, y = 'scholarly’

6 7 8 9
2 2 3 4 5 6 7 8
2 3 3 4 5 6 7 8
3 3 4 4 5 5 6 7

5

2 3 4

1
2
3
4
5

4 4 3 4 5 6 6 7

4

5 5 4 4 5 6 7 7

5 5 6 7 8
6 6 6 6 5 6 7 8

5 6 5

7

7 6 6 6 6 7
8 8 8 v 7 7 6 7
10 9 9 9 8 8 8 7 6

7

9

10

y

=6

Therefore, the edit distance between = and y = (10, 9)

Note: LCS(xz,y) =5

5



