Edit distance

- An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

Edit distance

- An alignment, or matched up, of two strings is simply a way of writing the strings one above the other. example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{ll}
s-n o w y & -s n o w-y \\
s u n n-y & s u n--n y
\end{array}
$$

"-" indicates a "gap"

Edit distance

- An alignment, or matched up, of two strings is simply a way of writing the strings one above the other. example: alignments of "SNOWY" and "SUNNY":

$$
\begin{aligned}
& \text { s - } \mathrm{n} \text { o w y } \\
& \text { - } \mathrm{s} \mathrm{n} \text { O W - } \mathrm{y} \\
& \text { s u n n - y } \\
& \text { sun--n y }
\end{aligned}
$$

"-" indicates a "gap"

- The cost of an alignment is the number of columns in which the letters differ.

Edit distance

- An alignment, or matched up, of two strings is simply a way of writing the strings one above the other. example: alignments of "SNOWY" and "SUNNY":

$$
\begin{aligned}
& \mathrm{s} \text { - } \mathrm{n} \text { o w y } \quad-\mathrm{s} \mathrm{n} \text { o w-y } \\
& \text { s u n n - y } \\
& \text { sun--n y }
\end{aligned}
$$

"-" indicates a "gap"

- The cost of an alignment is the number of columns in which the letters differ.
example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{cc}
s-n \circ w y & -s n o w-y \\
s u n n-y & s u n--n y \\
\operatorname{cost}=3 & \operatorname{cost}=5
\end{array}
$$

Edit distance

- An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.
example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{ll}
\mathrm{s}-\mathrm{n} \circ \mathrm{o} \mathrm{y} & -\mathrm{s} \mathrm{n} \circ \mathrm{o}-\mathrm{y} \\
\mathrm{~s} u \mathrm{n} \text { n }-\mathrm{y} & \mathrm{~s} u \mathrm{n}-\mathrm{n} \mathrm{y}
\end{array}
$$

"-" indicates a "gap"

- The cost of an alignment is the number of columns in which the letters differ.
example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{cc}
s-n \circ w y & -s n o w-y \\
s u n n-y & s u n-1 n y \\
\operatorname{cost}=3 & \operatorname{cost}=5
\end{array}
$$

- Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment

Edit distance

- An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.
example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{ll}
\mathrm{s}-\mathrm{n} \circ \mathrm{o} \mathrm{y} & -\mathrm{s} \mathrm{n} \circ \mathrm{o}-\mathrm{y} \\
\mathrm{~s} u \mathrm{n} \text { n }-\mathrm{y} & \mathrm{~s} u \mathrm{n}-\mathrm{n} \mathrm{y}
\end{array}
$$

"-" indicates a "gap"

- The cost of an alignment is the number of columns in which the letters differ.
example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{cc}
s-n o w y & -s n o w-y \\
s u n n-y & s u n--n y \\
\operatorname{cost}=3 & \operatorname{cost}=5
\end{array}
$$

- Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment
- Edit distance is the minimum number of edits - insertions, deletions and substitutions of characters - need to transform the first string into the second.

Edit distance

- An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.
example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{ll}
\mathrm{s}-\mathrm{n} \circ \mathrm{o} \mathrm{y} & -\mathrm{s} \mathrm{n} \circ \mathrm{o}-\mathrm{y} \\
\mathrm{~s} u \mathrm{n} \text { n }-\mathrm{y} & \mathrm{~s} u \mathrm{n}-\mathrm{n} \mathrm{y}
\end{array}
$$

"-" indicates a "gap"

- The cost of an alignment is the number of columns in which the letters differ.
example: alignments of "SNOWY" and "SUNNY":

$$
\begin{array}{cc}
s-n o w y & -s n o w-y \\
s u n n-y & s u n--n y \\
\operatorname{cost}=3 & \operatorname{cost}=5
\end{array}
$$

- Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment
- Edit distance is the minimum number of edits - insertions, deletions and substitutions of characters - need to transform the first string into the second. e.g. a spell checker.

Edit distance

- Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$.

Edit distance

- Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define $e(m, n)=$ the edit distance between x and y

Edit distance

- Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$
e(m, n)=\text { the edit distance between } x \text { and } y
$$

Our objective is to compute $e(m, n)$ efficiently

Edit distance

- Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$
e(m, n)=\text { the edit distance between } x \text { and } y
$$

Our objective is to compute $e(m, n)$ efficiently

- Subproblem:

Edit distance

- Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$
e(m, n)=\text { the edit distance between } x \text { and } y
$$

Our objective is to compute $e(m, n)$ efficiently

- Subproblem:
edit distance $e(i, j)$ between $x[1 \cdots i]$ and $y[1 \cdots j]$

Edit distance

- Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$
e(m, n)=\text { the edit distance between } x \text { and } y
$$

Our objective is to compute $e(m, n)$ efficiently

- Subproblem:
edit distance $e(i, j)$ between $x[1 \cdots i]$ and $y[1 \cdots j]$
- How to express $e(i, j)$ in terms of its subproblems, recursively?

Edit distance

- Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

$$
e(m, n)=\text { the edit distance between } x \text { and } y
$$

Our objective is to compute $e(m, n)$ efficiently

- Subproblem:
edit distance $e(i, j)$ between $x[1 \cdots i]$ and $y[1 \cdots j]$
- How to express $e(i, j)$ in terms of its subproblems, recursively?
- key observation: the rightmost column of an alignment of $x[1 \cdots i]$ and $y[1 \cdots j]$ can only be one of the following three cases:
Case 1
Case 2
Case 3
$x[i]$
-

or
-
$y[j]$
or
$x[i]$
$y[j]$

Edit distance

- By the above key observation, then

$$
e(i, j)=\min \{\underbrace{1+e(i-1, j)}_{\text {case } 1}, \underbrace{1+e(i, j-1)}_{\text {case } 2}, \underbrace{\operatorname{diff}(i, j)+e(i-1, j-1)}_{\text {case } 3}\}
$$

where

$$
\operatorname{diff}(i, j)= \begin{cases}0 & \text { if } x[i]=y[j] \\ 1 & \text { if } x[i] \neq y[j]\end{cases}
$$

- Question: how to find the corresponding optimal alignment?

Edit distance

- The answers to all the subproblems $e(i, j)$ form a two-dimensional table, and the final answer (our objective) is at $e(m, n)$.

Edit distance

- The answers to all the subproblems $e(i, j)$ form a two-dimensional table, and the final answer (our objective) is at $e(m, n)$.
- Initialization:

$$
\begin{aligned}
& e(0,0)=0 \\
& e(i, 0)=i \text { for } i=1, \ldots, m \\
& e(0, j)=j \text { for } j=1, \ldots, n
\end{aligned}
$$

Edit distance

- The answers to all the subproblems $e(i, j)$ form a two-dimensional table, and the final answer (our objective) is at $e(m, n)$.
- Initialization:

$$
\begin{aligned}
& e(0,0)=0 \\
& e(i, 0)=i \text { for } i=1, \ldots, m \\
& e(0, j)=j \text { for } j=1, \ldots, n
\end{aligned}
$$

- Pseudocode

Edit distance

- The answers to all the subproblems $e(i, j)$ form a two-dimensional table, and the final answer (our objective) is at $e(m, n)$.
- Initialization:

$$
\begin{aligned}
& e(0,0)=0 \\
& e(i, 0)=i \text { for } i=1, \ldots, m \\
& e(0, j)=j \text { for } j=1, \ldots, n
\end{aligned}
$$

- Pseudocode
- Example 1. $x=$ 'snowy', $y=$ 'sunny'

Edit distance

- The answers to all the subproblems $e(i, j)$ form a two-dimensional table, and the final answer (our objective) is at $e(m, n)$.
- Initialization:

$$
\begin{aligned}
& e(0,0)=0 \\
& e(i, 0)=i \text { for } i=1, \ldots, m \\
& e(0, j)=j \text { for } j=1, \ldots, n
\end{aligned}
$$

- Pseudocode
- Example 1. $x=$ 'snowy', $y=$ 'sunny'

		s	u	n	n	y
	0	1	2	3	4	5
s	1	0	1	2	3	4
n	2	1	1	1	2	3
o	3	2	2	2	2	3
w	4	3	3	3	3	3
y	5	4	4	4	4	3

Edit distance

- The answers to all the subproblems $e(i, j)$ form a two-dimensional table, and the final answer (our objective) is at $e(m, n)$.
- Initialization:

$$
\begin{aligned}
& e(0,0)=0 \\
& e(i, 0)=i \text { for } i=1, \ldots, m \\
& e(0, j)=j \text { for } j=1, \ldots, n
\end{aligned}
$$

- Pseudocode
- Example 1. $x=$ 'snowy', $y=$ 'sunny'

		s	u	n	n	y
	0	1	2	3	4	5
s	1	0	1	2	3	4
n	2	1	1	1	2	3
o	3	2	2	2	2	3
w	4	3	3	3	3	3
y	5	4	4	4	4	3

Therefore, the edit distance between x and $y=e(5,5)=3$.

Edit distance

Example 2. $x=$ 'heroically', $y=$ 'scholarly'

Edit distance

Example 2. $x=$ 'heroically', $y=$ 'scholarly'

		s	c	h	o	I	a	r	I	y
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
e	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
o	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
c	6	6	5	6	5	5	5	6	7	8
a	7	7	6	6	6	6	5	6	7	8
l	8	8	7	7	7	6	6	6	6	7
I	9	9	8	8	8	7	7	7	6	7
y	10	10	9	9	9	8	8	8	7	6

Edit distance

Example 2. $x=$ 'heroically', $y=$ 'scholarly'

		s	c	h	o	I	a	r	l	y
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
e	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
o	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
c	6	6	5	6	5	5	5	6	7	8
a	7	7	6	6	6	6	5	6	7	8
l	8	8	7	7	7	6	6	6	6	7
I	9	9	8	8	8	7	7	7	6	7
y	10	10	9	9	9	8	8	8	7	6

Therefore, the edit distance between x and $y=e(10,9)=6$

Edit distance

Example 2. $x=$ 'heroically', $y=$ 'scholarly'

		s	c	h	o	l	a	r	l	y
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
e	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
o	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
c	6	6	5	6	5	5	5	6	7	8
a	7	7	6	6	6	6	5	6	7	8
l	8	8	7	7	7	6	6	6	6	7
l	9	9	8	8	8	7	7	7	6	7
y	10	10	9	9	9	8	8	8	7	6

Therefore, the edit distance between x and $y=e(10,9)=6$
Note: $\operatorname{LCS}(x, y)=5$

