
Edit distance

I An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

“-” indicates a “gap”

I The cost of an alignment is the number of columns in which the
letters differ.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

I Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

I Edit distance is the minimum number of edits – insertions, deletions
and substitutions of characters – need to transform the first string into
the second. e.g. a spell checker.

1 / 5



Edit distance

I An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

“-” indicates a “gap”

I The cost of an alignment is the number of columns in which the
letters differ.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

I Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

I Edit distance is the minimum number of edits – insertions, deletions
and substitutions of characters – need to transform the first string into
the second. e.g. a spell checker.

1 / 5



Edit distance

I An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

“-” indicates a “gap”

I The cost of an alignment is the number of columns in which the
letters differ.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

I Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

I Edit distance is the minimum number of edits – insertions, deletions
and substitutions of characters – need to transform the first string into
the second. e.g. a spell checker.

1 / 5



Edit distance

I An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

“-” indicates a “gap”

I The cost of an alignment is the number of columns in which the
letters differ.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

I Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

I Edit distance is the minimum number of edits – insertions, deletions
and substitutions of characters – need to transform the first string into
the second. e.g. a spell checker.

1 / 5



Edit distance

I An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

“-” indicates a “gap”

I The cost of an alignment is the number of columns in which the
letters differ.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

I Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

I Edit distance is the minimum number of edits – insertions, deletions
and substitutions of characters – need to transform the first string into
the second. e.g. a spell checker.

1 / 5



Edit distance

I An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

“-” indicates a “gap”

I The cost of an alignment is the number of columns in which the
letters differ.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

I Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

I Edit distance is the minimum number of edits – insertions, deletions
and substitutions of characters – need to transform the first string into
the second.

e.g. a spell checker.

1 / 5



Edit distance

I An alignment, or matched up, of two strings is simply a way of
writing the strings one above the other.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

“-” indicates a “gap”

I The cost of an alignment is the number of columns in which the
letters differ.

example: alignments of “SNOWY” and “SUNNY”:

s - n o w y - s n o w - y

s u n n - y s u n - - n y

cost = 3 cost = 5

I Edit distance between two strings is the minimum cost of their
alignment, i.e., the best possible alignment

I Edit distance is the minimum number of edits – insertions, deletions
and substitutions of characters – need to transform the first string into
the second. e.g. a spell checker.

1 / 5



Edit distance

I Given strings x[1 · · ·m] and y[1 · · ·n].

Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

I Subproblem:

edit distance e(i, j) between x[1 · · · i] and y[1 · · · j]
I How to express e(i, j) in terms of its subproblems, recursively?

I key observation: the rightmost column of an alignment of x[1 · · · i]
and y[1 · · · j] can only be one of the following three cases:

Case 1

x[i]
−

or

Case 2

−
y[j]

or

Case 3

x[i]
y[j]

2 / 5



Edit distance

I Given strings x[1 · · ·m] and y[1 · · ·n]. Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

I Subproblem:

edit distance e(i, j) between x[1 · · · i] and y[1 · · · j]
I How to express e(i, j) in terms of its subproblems, recursively?

I key observation: the rightmost column of an alignment of x[1 · · · i]
and y[1 · · · j] can only be one of the following three cases:

Case 1

x[i]
−

or

Case 2

−
y[j]

or

Case 3

x[i]
y[j]

2 / 5



Edit distance

I Given strings x[1 · · ·m] and y[1 · · ·n]. Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

I Subproblem:

edit distance e(i, j) between x[1 · · · i] and y[1 · · · j]
I How to express e(i, j) in terms of its subproblems, recursively?

I key observation: the rightmost column of an alignment of x[1 · · · i]
and y[1 · · · j] can only be one of the following three cases:

Case 1

x[i]
−

or

Case 2

−
y[j]

or

Case 3

x[i]
y[j]

2 / 5



Edit distance

I Given strings x[1 · · ·m] and y[1 · · ·n]. Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

I Subproblem:

edit distance e(i, j) between x[1 · · · i] and y[1 · · · j]
I How to express e(i, j) in terms of its subproblems, recursively?

I key observation: the rightmost column of an alignment of x[1 · · · i]
and y[1 · · · j] can only be one of the following three cases:

Case 1

x[i]
−

or

Case 2

−
y[j]

or

Case 3

x[i]
y[j]

2 / 5



Edit distance

I Given strings x[1 · · ·m] and y[1 · · ·n]. Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

I Subproblem:

edit distance e(i, j) between x[1 · · · i] and y[1 · · · j]

I How to express e(i, j) in terms of its subproblems, recursively?

I key observation: the rightmost column of an alignment of x[1 · · · i]
and y[1 · · · j] can only be one of the following three cases:

Case 1

x[i]
−

or

Case 2

−
y[j]

or

Case 3

x[i]
y[j]

2 / 5



Edit distance

I Given strings x[1 · · ·m] and y[1 · · ·n]. Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

I Subproblem:

edit distance e(i, j) between x[1 · · · i] and y[1 · · · j]
I How to express e(i, j) in terms of its subproblems, recursively?

I key observation: the rightmost column of an alignment of x[1 · · · i]
and y[1 · · · j] can only be one of the following three cases:

Case 1

x[i]
−

or

Case 2

−
y[j]

or

Case 3

x[i]
y[j]

2 / 5



Edit distance

I Given strings x[1 · · ·m] and y[1 · · ·n]. Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

I Subproblem:

edit distance e(i, j) between x[1 · · · i] and y[1 · · · j]
I How to express e(i, j) in terms of its subproblems, recursively?

I key observation: the rightmost column of an alignment of x[1 · · · i]
and y[1 · · · j] can only be one of the following three cases:

Case 1

x[i]
−

or

Case 2

−
y[j]

or

Case 3

x[i]
y[j]

2 / 5



Edit distance

I By the above key observation, then

e(i, j) = min{ 1 + e(i− 1, j)︸ ︷︷ ︸
case 1

, 1 + e(i, j − 1)︸ ︷︷ ︸
case 2

, diff(i, j) + e(i− 1, j − 1)︸ ︷︷ ︸
case 3

}

where

diff(i, j) =

{
0 if x[i] = y[j]
1 if x[i] 6= y[j]

I Question: how to find the corresponding optimal alignment?

3 / 5



Edit distance

I The answers to all the subproblems e(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m,n).

I Initialization:

e(0, 0) = 0;

e(i, 0) = i for i = 1, . . . ,m

e(0, j) = j for j = 1, . . . , n

I Pseudocode
I Example 1. x = ’snowy’, y = ’sunny’

s u n n y
0 1 2 3 4 5

s 1 0 1 2 3 4
n 2 1 1 1 2 3
o 3 2 2 2 2 3
w 4 3 3 3 3 3
y 5 4 4 4 4 3

Therefore, the edit distance between x and y = e(5, 5) = 3.

4 / 5



Edit distance

I The answers to all the subproblems e(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m,n).

I Initialization:

e(0, 0) = 0;

e(i, 0) = i for i = 1, . . . ,m

e(0, j) = j for j = 1, . . . , n

I Pseudocode
I Example 1. x = ’snowy’, y = ’sunny’

s u n n y
0 1 2 3 4 5

s 1 0 1 2 3 4
n 2 1 1 1 2 3
o 3 2 2 2 2 3
w 4 3 3 3 3 3
y 5 4 4 4 4 3

Therefore, the edit distance between x and y = e(5, 5) = 3.

4 / 5



Edit distance

I The answers to all the subproblems e(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m,n).

I Initialization:

e(0, 0) = 0;

e(i, 0) = i for i = 1, . . . ,m

e(0, j) = j for j = 1, . . . , n

I Pseudocode

I Example 1. x = ’snowy’, y = ’sunny’
s u n n y

0 1 2 3 4 5
s 1 0 1 2 3 4
n 2 1 1 1 2 3
o 3 2 2 2 2 3
w 4 3 3 3 3 3
y 5 4 4 4 4 3

Therefore, the edit distance between x and y = e(5, 5) = 3.

4 / 5



Edit distance

I The answers to all the subproblems e(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m,n).

I Initialization:

e(0, 0) = 0;

e(i, 0) = i for i = 1, . . . ,m

e(0, j) = j for j = 1, . . . , n

I Pseudocode
I Example 1. x = ’snowy’, y = ’sunny’

s u n n y
0 1 2 3 4 5

s 1 0 1 2 3 4
n 2 1 1 1 2 3
o 3 2 2 2 2 3
w 4 3 3 3 3 3
y 5 4 4 4 4 3

Therefore, the edit distance between x and y = e(5, 5) = 3.

4 / 5



Edit distance

I The answers to all the subproblems e(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m,n).

I Initialization:

e(0, 0) = 0;

e(i, 0) = i for i = 1, . . . ,m

e(0, j) = j for j = 1, . . . , n

I Pseudocode
I Example 1. x = ’snowy’, y = ’sunny’

s u n n y
0 1 2 3 4 5

s 1 0 1 2 3 4
n 2 1 1 1 2 3
o 3 2 2 2 2 3
w 4 3 3 3 3 3
y 5 4 4 4 4 3

Therefore, the edit distance between x and y = e(5, 5) = 3.

4 / 5



Edit distance

I The answers to all the subproblems e(i, j) form a two-dimensional
table, and the final answer (our objective) is at e(m,n).

I Initialization:

e(0, 0) = 0;

e(i, 0) = i for i = 1, . . . ,m

e(0, j) = j for j = 1, . . . , n

I Pseudocode
I Example 1. x = ’snowy’, y = ’sunny’

s u n n y
0 1 2 3 4 5

s 1 0 1 2 3 4
n 2 1 1 1 2 3
o 3 2 2 2 2 3
w 4 3 3 3 3 3
y 5 4 4 4 4 3

Therefore, the edit distance between x and y = e(5, 5) = 3.
4 / 5



Edit distance

Example 2. x = ’heroically’, y = ’scholarly’

s c h o l a r l y
0 1 2 3 4 5 6 7 8 9

h 1 1 2 2 3 4 5 6 7 8
e 2 2 2 3 3 4 5 6 7 8
r 3 3 3 3 4 4 5 5 6 7
o 4 4 4 4 3 4 5 6 6 7
i 5 5 5 5 4 4 5 6 7 7
c 6 6 5 6 5 5 5 6 7 8
a 7 7 6 6 6 6 5 6 7 8
l 8 8 7 7 7 6 6 6 6 7
l 9 9 8 8 8 7 7 7 6 7
y 10 10 9 9 9 8 8 8 7 6

Therefore, the edit distance between x and y = e(10, 9) = 6

Note: LCS(x, y) = 5

5 / 5



Edit distance

Example 2. x = ’heroically’, y = ’scholarly’

s c h o l a r l y
0 1 2 3 4 5 6 7 8 9

h 1 1 2 2 3 4 5 6 7 8
e 2 2 2 3 3 4 5 6 7 8
r 3 3 3 3 4 4 5 5 6 7
o 4 4 4 4 3 4 5 6 6 7
i 5 5 5 5 4 4 5 6 7 7
c 6 6 5 6 5 5 5 6 7 8
a 7 7 6 6 6 6 5 6 7 8
l 8 8 7 7 7 6 6 6 6 7
l 9 9 8 8 8 7 7 7 6 7
y 10 10 9 9 9 8 8 8 7 6

Therefore, the edit distance between x and y = e(10, 9) = 6

Note: LCS(x, y) = 5

5 / 5



Edit distance

Example 2. x = ’heroically’, y = ’scholarly’

s c h o l a r l y
0 1 2 3 4 5 6 7 8 9

h 1 1 2 2 3 4 5 6 7 8
e 2 2 2 3 3 4 5 6 7 8
r 3 3 3 3 4 4 5 5 6 7
o 4 4 4 4 3 4 5 6 6 7
i 5 5 5 5 4 4 5 6 7 7
c 6 6 5 6 5 5 5 6 7 8
a 7 7 6 6 6 6 5 6 7 8
l 8 8 7 7 7 6 6 6 6 7
l 9 9 8 8 8 7 7 7 6 7
y 10 10 9 9 9 8 8 8 7 6

Therefore, the edit distance between x and y = e(10, 9) = 6

Note: LCS(x, y) = 5

5 / 5



Edit distance

Example 2. x = ’heroically’, y = ’scholarly’

s c h o l a r l y
0 1 2 3 4 5 6 7 8 9

h 1 1 2 2 3 4 5 6 7 8
e 2 2 2 3 3 4 5 6 7 8
r 3 3 3 3 4 4 5 5 6 7
o 4 4 4 4 3 4 5 6 6 7
i 5 5 5 5 4 4 5 6 7 7
c 6 6 5 6 5 5 5 6 7 8
a 7 7 6 6 6 6 5 6 7 8
l 8 8 7 7 7 6 6 6 6 7
l 9 9 8 8 8 7 7 7 6 7
y 10 10 9 9 9 8 8 8 7 6

Therefore, the edit distance between x and y = e(10, 9) = 6

Note: LCS(x, y) = 5

5 / 5


