An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y s u n n - y s u n - - n y "-" indicates a "gap"

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y s u n n - y s u n - - n y "-" indicates a "gap"

The cost of an alignment is the number of columns in which the letters differ.

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

example: alignments of "SNOWY" and "SUNNY":

s - n o w y - s n o w - y s u n n - y s u n - - n y "-" indicates a "gap"

The cost of an alignment is the number of columns in which the letters differ.

example: alignments of "SNOWY" and "SUNNY":

s	-	n	0	W	у				-	S	n	0	W	-	у
s	u	n	n	-	у				s	u	n	-	-	n	у
(cos	st	=	3						С	ost	t =	= {	5	

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

example: alignments of "SNOWY" and "SUNNY":

S	-	n	0	W	У	-	S	n	0	W	-	у
S	u	n	n	-	у	S	u	n	-	-	n	у
"-" indicates	а	"g	ар	"								

The cost of an alignment is the number of columns in which the letters differ.

example: alignments of "SNOWY" and "SUNNY":

S	-	n	0	W	у	-	S	n	0	W	-	у
s	u	n	n	-	у	S	u	n	-	-	n	у
C	cos	st	=	3			С	ost	; =	= 5	5	

Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

example: alignments of "SNOWY" and "SUNNY":

S	-	n	0	W	У	-	S	n	0	W	-	У
S	u	n	n	-	у	S	u	n	-	-	n	у
"-" indicates	а	"g	ар	,,								

The cost of an alignment is the number of columns in which the letters differ.

example: alignments of "SNOWY" and "SUNNY":

S	-	n	0	W	у				-	S	n	0	W	-	у
s	u	n	n	-	У				s	u	n	-	-	n	у
C	cos	st	=	3						С	ost	t =	= {	5	

- Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment
- Edit distance is the minimum number of edits insertions, deletions and substitutions of characters – need to transform the first string into the second.

An alignment, or matched up, of two strings is simply a way of writing the strings one above the other.

example: alignments of "SNOWY" and "SUNNY":

S	-	n	0	W	У	-	S	n	0	W	-	У
S	u	n	n	-	у	S	u	n	-	-	n	у
"-" indicates	а	"g	ар	,,								

The cost of an alignment is the number of columns in which the letters differ.

example: alignments of "SNOWY" and "SUNNY":

s	-	n	0	W	У		-	S	n	0	W	-	у
s	u	n	n	-	у		s	u	n	-	-	n	у
C	cos	st	=	3				С	ost	; =	= 5	5	

- Edit distance between two strings is the minimum cost of their alignment, i.e., the best possible alignment
- Edit distance is the minimum number of edits insertions, deletions and substitutions of characters – need to transform the first string into the second. e.g. a spell checker.

• Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$.

• Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

e(m,n) = the edit distance between x and y

• Given strings $x[1\cdots m]$ and $y[1\cdots n]$. Define

e(m,n) = the edit distance between x and y

Our objective is to compute e(m,n) efficiently

• Given strings $x[1\cdots m]$ and $y[1\cdots n]$. Define

e(m,n) =the edit distance between x and y

Our objective is to compute e(m, n) efficiently

Subproblem:

• Given strings $x[1\cdots m]$ and $y[1\cdots n]$. Define

e(m,n) =the edit distance between x and y

Our objective is to compute e(m,n) efficiently

Subproblem:

edit distance e(i,j) between $x[1\cdots i]$ and $y[1\cdots j]$

• Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

 $e(\boldsymbol{m},\boldsymbol{n})=\text{the edit distance between }\boldsymbol{x}\text{ and }\boldsymbol{y}$

Our objective is to compute e(m,n) efficiently

Subproblem:

edit distance e(i,j) between $x[1\cdots i]$ and $y[1\cdots j]$

• How to express e(i, j) in terms of its subproblems, *recursively*?

• Given strings $x[1 \cdots m]$ and $y[1 \cdots n]$. Define

 $e(\boldsymbol{m},\boldsymbol{n})=\text{the edit distance between }\boldsymbol{x}\text{ and }\boldsymbol{y}$

Our objective is to compute e(m,n) efficiently

Subproblem:

edit distance e(i,j) between $x[1\cdots i]$ and $y[1\cdots j]$

- How to express e(i, j) in terms of its subproblems, *recursively*?
- ▶ key observation: the rightmost column of an alignment of x[1···i] and y[1···j] can only be one of the following three cases:

$$\begin{array}{cccc} {\sf Case \ 1} & {\sf Case \ 2} & {\sf Case \ 3} \\ x[i] & {\sf or} & - & {\sf or} & x[i] \\ - & y[j] & y[j] \end{array}$$

2 / 5

By the above key observation, then

$$e(i,j) = \min\{\underbrace{1 + e(i-1,j)}_{\mathsf{case } 1}, \underbrace{1 + e(i,j-1)}_{\mathsf{case } 2}, \underbrace{\operatorname{diff}(i,j) + e(i-1,j-1)}_{\mathsf{case } 3}\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ● ○ ● ● ●

3/5

where

$$\operatorname{diff}(i,j) = \left\{ \begin{array}{ll} 0 & \text{if } x[i] = y[j] \\ 1 & \text{if } x[i] \neq y[j] \end{array} \right.$$

Question: how to find the corresponding optimal alignment?

► The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).

- ► The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- ► The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- ► The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- Pseudocode
- Example 1. x = 'snowy', y = 'sunny'

- The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- Pseudocode
- Example 1. x = 'snowy', y = 'sunny'

		s	u	n	n	У
	0	1	2	3	4	5
s	1	0	1	2	3	4
n	2	1	1	1	2	3
0	3	2	2	2	2	3
w	4	3	3	3	3	3
у	5	4	4	4	4	3

- ► The answers to all the subproblems e(i, j) form a two-dimensional table, and the final answer (our objective) is at e(m, n).
- Initialization:

$$e(0,0) = 0;$$

 $e(i,0) = i \text{ for } i = 1, \dots, m$
 $e(0,j) = j \text{ for } j = 1, \dots, n$

- Pseudocode
- Example 1. x = 'snowy', y = 'sunny'

		s	u	n	n	У
	0	1	2	3	4	5
S	1	0	1	2	3	4
n	2	1	1	1	2	3
0	3	2	2	2	2	3
w	4	3	3	3	3	3
у	5	4	4	4	4	3

Therefore, the edit distance between x and y = e(5, 5) = 3.

Example 2. x = 'heroically', y = 'scholarly'

Example 2. x = 'heroically', y = 'scholarly'

		S	С	h	0	Ι	а	r	Ι	У
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
е	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
0	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
с	6	6	5	6	5	5	5	6	7	8
а	7	7	6	6	6	6	5	6	7	8
Ι	8	8	7	7	7	6	6	6	6	7
Ι	9	9	8	8	8	7	7	7	6	7
у	10	10	9	9	9	8	8	8	7	6

Example 2. x = 'heroically', y = 'scholarly'

		S	С	h	0	Ι	а	r	Ι	У
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
е	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
0	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
с	6	6	5	6	5	5	5	6	7	8
а	7	7	6	6	6	6	5	6	7	8
Ι	8	8	7	7	7	6	6	6	6	7
Ι	9	9	8	8	8	7	7	7	6	7
у	10	10	9	9	9	8	8	8	7	6

Therefore, the edit distance between x and y=e(10,9)=6

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 の Q (や) 5/5

Example 2. x = 'heroically', y = 'scholarly'

		S	С	h	0	Ι	а	r	I	У
	0	1	2	3	4	5	6	7	8	9
h	1	1	2	2	3	4	5	6	7	8
е	2	2	2	3	3	4	5	6	7	8
r	3	3	3	3	4	4	5	5	6	7
0	4	4	4	4	3	4	5	6	6	7
i	5	5	5	5	4	4	5	6	7	7
с	6	6	5	6	5	5	5	6	7	8
а	7	7	6	6	6	6	5	6	7	8
Ι	8	8	7	7	7	6	6	6	6	7
Ι	9	9	8	8	8	7	7	7	6	7
у	10	10	9	9	9	8	8	8	7	6

Therefore, the edit distance between x and y=e(10,9)=6

Note: LCS(x, y) = 5