III. Divide-and-Conquer Recurrences and the Master Theorem

Review: Recurrence relation

- A recurrence relation (RR) for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for $n \geq n_{0}$, where n_{0} is a nonnegative integer.

Review: Recurrence relation

- A recurrence relation (RR) for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for $n \geq n_{0}$, where n_{0} is a nonnegative integer.
The initial conditions for a sequence specify the terms that precede the first term where the RR takes effect.

Review: Recurrence relation

- A recurrence relation (RR) for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for $n \geq n_{0}$, where n_{0} is a nonnegative integer.
The initial conditions for a sequence specify the terms that precede the first term where the RR takes effect.
- Example: Fibonacci numbers: $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with initials $F_{0}=0$ and $F_{1}=1$.

Review: Recurrence relation

- A recurrence relation (RR) for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for $n \geq n_{0}$, where n_{0} is a nonnegative integer.
The initial conditions for a sequence specify the terms that precede the first term where the RR takes effect.
- Example: Fibonacci numbers: $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with initials $F_{0}=0$ and $F_{1}=1$.
- A sequence $\left\{a_{n}\right\}$ is called a solution of a RR if its terms satisfy the RR.

Review: Recurrence relation

- A recurrence relation (RR) for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for $n \geq n_{0}$, where n_{0} is a nonnegative integer.
The initial conditions for a sequence specify the terms that precede the first term where the RR takes effect.
- Example: Fibonacci numbers: $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with initials $F_{0}=0$ and $F_{1}=1$.
- A sequence $\left\{a_{n}\right\}$ is called a solution of a RR if its terms satisfy the RR.
- Example:
- $a_{n}=3 n$ is a solution of $a_{n}=2 a_{n-1}-a_{n-2}$ for $n \geq 2$.

Review: Recurrence relation

- A recurrence relation (RR) for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for $n \geq n_{0}$, where n_{0} is a nonnegative integer.
The initial conditions for a sequence specify the terms that precede the first term where the RR takes effect.
- Example: Fibonacci numbers: $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with initials $F_{0}=0$ and $F_{1}=1$.
- A sequence $\left\{a_{n}\right\}$ is called a solution of a RR if its terms satisfy the RR.
- Example:
- $a_{n}=3 n$ is a solution of $a_{n}=2 a_{n-1}-a_{n-2}$ for $n \geq 2$.
- In fact, $a_{n}=5$ is also a solution. (and $a_{n}=2^{n}$ is not a solution!)

Review: Recurrence relation

- A recurrence relation (RR) for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for $n \geq n_{0}$, where n_{0} is a nonnegative integer.
The initial conditions for a sequence specify the terms that precede the first term where the RR takes effect.
- Example: Fibonacci numbers: $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with initials $F_{0}=0$ and $F_{1}=1$.
- A sequence $\left\{a_{n}\right\}$ is called a solution of a RR if its terms satisfy the RR.
- Example:
- $a_{n}=3 n$ is a solution of $a_{n}=2 a_{n-1}-a_{n-2}$ for $n \geq 2$.
- In fact, $a_{n}=5$ is also a solution. (and $a_{n}=2^{n}$ is not a solution!)
- Reading: Handout on "Recurrence Relation Review" (April 2).

Divide-and-Conquer recurrences

- Divide-and-Conquer (DC) recurrence:

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)
$$

where

- constants $a \geq 1$ and $b>1$,
- function $f(n)$ is nonnegative, $f(n) \geq 0$.

Divide-and-Conquer recurrences

- Divide-and-Conquer (DC) recurrence:

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)
$$

where

- constants $a \geq 1$ and $b>1$,
- function $f(n)$ is nonnegative, $f(n) \geq 0$.
- Example. the cost function of Merge Sort

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+1+(n-1)
$$

where

- $a=2$ (the number of subproblems)
- $b=2(n / 2$ is the size of subproblems)
- $f(n)=1+(n-1)=n$ (the cost to divide and combine)
assuming $n=2^{k}$ for $k \geq 1$.

Two methods for finding solutions of DC recurrences

1. Explicit substitution/recursion
2. the master theorem/method

Solving DC recurrences by explicit substitution

- Explicit substitution can be illustrated by the following example

$$
T(n)=4 \cdot T\left(\frac{n}{2}\right)+n, \quad n=2^{k}
$$

- By iterating the recurrence (i.e. explicit substitution), we have

$$
\begin{aligned}
T(n) & =4 \cdot T\left(\frac{n}{2}\right)+n \\
& =4 \cdot\left(4 \cdot T\left(\frac{n}{2}\right)+\frac{n}{2}\right)+n=4^{2} \cdot T\left(\frac{n}{2^{2}}\right)+2 n+n \\
& =4^{3} \cdot T\left(\frac{n}{2^{3}}\right)+2^{2} n+2 n+n \\
& =\cdots \\
& =4^{k} \cdot T\left(\frac{n}{2^{k}}\right)+2^{k-1} n+\cdots+2 n+n \\
& =4^{k} \cdot T(1)+\left(2^{k-1}+\cdots+2+1\right) n \\
& =4^{k} \cdot T(1)+\left(\frac{2^{k}-1}{2-1}\right) n \\
& =n^{2} \cdot T(1)+n(n-1)=\Theta\left(n^{2}\right)
\end{aligned}
$$

The master theorem/method to solve DC recurrences

- For the DC recurrence, let $n=b^{k}$, then by recursion ${ }^{1}$, we have

$$
T(n)=n^{\log _{b} a} \cdot T(1)+\sum_{j=0}^{k-1} a^{j} f\left(\frac{n}{b^{j}}\right)
$$

[^0]
The master theorem/method to solve DC recurrences

- For the DC recurrence, let $n=b^{k}$, then by recursion ${ }^{1}$, we have

$$
T(n)=n^{\log _{b} a} \cdot T(1)+\sum_{j=0}^{k-1} a^{j} f\left(\frac{n}{b^{j}}\right)
$$

- By carefully analyzing the terms in $T(n)$, we can provide asymptotic bounds on the growth of $T(n)$ in the following three cases.

[^1]
The master theorem/method to solve DC recurrences

Case 1: If $n^{\log _{b} a}$ is polynomially larger than $f(n)$, i.e.,

$$
\frac{n^{\log _{b} a}}{f(n)}=\Omega\left(n^{\epsilon}\right) \quad \text { for some constant } \epsilon>0
$$

then

$$
T(n)=\Theta\left(n^{\log _{b} a}\right) .
$$

Example: $T(n)=7 \cdot T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)$

The master theorem/method to solve DC recurrences

Case 2: If $n^{\log _{b} a}$ and $f(n)$ are on the same order, i.e.,

$$
f(n)=\Theta\left(n^{\log _{b} a}\right)
$$

then

$$
T(n)=\Theta\left(n^{\log _{b} a} \lg n\right) .
$$

Example: $T(n)=2 \cdot T\left(\frac{n}{2}\right)+\Theta(n)$

The master theorem/method to solve DC recurrences

Case 3: If $f(n)$ is polynomially greater than $n^{\log _{b} a}$, i.e.,

$$
\frac{f(n)}{n^{\log _{b} a}}=\Omega\left(n^{\epsilon}\right) \quad \text { for some constant } \epsilon>0
$$

and $f(n)$ satisfies the regularity condition (see next slide), then

$$
T(n)=\Theta(f(n)) .
$$

Example: $T(n)=4 \cdot T\left(\frac{n}{2}\right)+n^{3}$

Remarks

1. $f(n)$ satisfies the regularity condition if

$$
a \cdot f\left(\frac{n}{b}\right) \leq c f(n)
$$

for some constant $c<1$ and for all sufficient large n.
2. The proof of the master theorem is involved, shown in section 4.6, which we can safely skip.
3. The master theorem doesn't cover all possible cases, and the master method cannot solve every DC recurrences.

[^0]: ${ }^{1}$ details can be safely skipped for our purpose.

[^1]: ${ }^{1}$ details can be safely skipped for our purpose.

