
III. Divide-and-Conquer Recurrences
and the Master Theorem
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Review: Recurrence relation

I A recurrence relation (RR) for the sequence {an} is an equation
that expresses an in terms of one or more of the previous terms of the
sequence, namely, a0, a1, . . . , an−1, for n ≥ n0, where n0 is a
nonnegative integer.

The initial conditions for a sequence specify the terms that precede the
first term where the RR takes effect.

I Example: Fibonacci numbers: Fn = Fn−1 + Fn−2 for n ≥ 2 with
initials F0 = 0 and F1 = 1.

I A sequence {an} is called a solution of a RR if its terms satisfy the
RR.

I Example:
I an = 3n is a solution of an = 2an−1 − an−2 for n ≥ 2.
I In fact, an = 5 is also a solution. (and an = 2n is not a solution!)

I Reading: Handout on “Recurrence Relation Review” (April 2).
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Divide-and-Conquer recurrences

I Divide-and-Conquer (DC) recurrence:

T (n) = a · T
(n
b

)
+ f(n)

where
I constants a ≥ 1 and b > 1,
I function f(n) is nonnegative, f(n) ≥ 0.

I Example. the cost function of Merge Sort

T (n) = 2 · T
(n
2

)
+ 1 + (n− 1)

where
I a = 2 (the number of subproblems)
I b = 2 (n/2 is the size of subproblems)
I f(n) = 1 + (n− 1) = n (the cost to divide and combine)

assuming n = 2k for k ≥ 1.
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Two methods for finding solutions of DC recurrences

1. Explicit substitution/recursion

2. the master theorem/method
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Solving DC recurrences by explicit substitution

I Explicit substitution can be illustrated by the following example

T (n) = 4 · T (n
2
) + n, n = 2k

I By iterating the recurrence (i.e. explicit substitution), we have

T (n) = 4 · T (n
2
) + n

= 4 ·
(
4 · T (

n
2

2
) +

n

2

)
+ n = 42 · T ( n

22
) + 2n+ n

= 43 · T ( n
23

) + 22n+ 2n+ n

= · · ·

= 4k · T ( n
2k

) + 2k−1n+ · · ·+ 2n+ n

= 4k · T (1) + (2k−1 + · · ·+ 2 + 1)n

= 4k · T (1) +
(
2k − 1

2− 1

)
n

= n2 · T (1) + n(n− 1) = Θ(n2)

5 / 10



The master theorem/method to solve DC recurrences

I For the DC recurrence, let n = bk, then by recursion1, we have

T (n) = nlogb a · T (1) +
k−1∑
j=0

ajf
( n
bj

)

I By carefully analyzing the terms in T (n), we can provide asymptotic
bounds on the growth of T (n) in the following three cases.

1details can be safely skipped for our purpose.
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The master theorem/method to solve DC recurrences

Case 1: If nlogb a is polynomially larger than f(n), i.e.,

nlogb a

f(n)
= Ω(nε) for some constant ε > 0,

then
T (n) = Θ(nlogb a).

Example: T (n) = 7 · T (n2 ) +Θ(n2)
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The master theorem/method to solve DC recurrences

Case 2: If nlogb a and f(n) are on the same order, i.e.,

f(n) = Θ(nlogb a),

then
T (n) = Θ(nlogb a lg n).

Example: T (n) = 2 · T (n2 ) +Θ(n)
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The master theorem/method to solve DC recurrences

Case 3: If f(n) is polynomially greater than nlogb a, i.e.,

f(n)

nlogb a
= Ω(nε) for some constant ε > 0

and f(n) satisfies the regularity condition (see next slide),
then

T (n) = Θ(f(n)).

Example: T (n) = 4 · T (n2 ) + n3
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Remarks

1. f(n) satisfies the regularity condition if

a · f
(n
b

)
≤ cf(n)

for some constant c < 1 and for all sufficient large n.

2. The proof of the master theorem is involved, shown in section 4.6,
which we can safely skip.

3. The master theorem doesn’t cover all possible cases, and the master
method cannot solve every DC recurrences.
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