1. Let $T(n)$ be defined by the following recurrence relation

$$
\left\{\begin{array}{l}
T(0)=T(1)=1 \\
T(n)=T(n-1)+T(n-2)+1 \quad \text { for } \quad n \geq 2
\end{array}\right.
$$

Show that

$$
T(n)=2 F_{n}-1 \quad \text { for } \quad n \geq 0
$$

where F_{n} is the nth Fibonacci number, i.e.,

$$
\left\{\begin{array}{l}
F_{0}=F_{1}=1 \\
F_{n}=F_{n-1}+F_{n-2} \quad \text { for } \quad n \geq 2
\end{array}\right.
$$

2. Find the solution of the recurrence relation $f_{n}=f_{n-1}+f_{n-2}$ with $f_{0}=f_{1}=1$.
3. Show by mathematical induction that $T(n)=\lg n+1$ is the solution of the recurrence relation

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T\left(\frac{n}{2}\right)+1 & \text { otherwise }\end{cases}
$$

Assume that $n=2^{k}, k \geq 0$.

