
ECS122A Handout

The 0-1 Knapsack Problem: a thief robbing a store finds n items; the ith item is worth
vi dollars and weights wi pounds, where vi and wi are positive integers. He wants to take
as valuable a load as possible, but he can carry at most W pounds in his knapsack for some
positive integer W . What items should be taken?

Formally, the 0-1 knapsack problem can be stated as follws:

Given: n items of values v1, v2, . . . , vn (positive integers) and of the weight w1, w2, . . . , wn

(positive integers), and a total weight W (positive integer).

Find: a subsect S ⊆ {1, 2, . . . , n} of the items such that∑
i∈S

wi ≤W and
∑
i∈S

vi is maximized.

This is called the 0-1 knapsack problem because each item must either be taken or left behind;
the thief cannot take a fractional amount of an item or take an item more than once. The
knapsack problem is an abstraction of many real problems, from investing to telephone routing.

Dynamic Programming

• The solution is based on the optimal-substructure observation as discussed in the class.

Let k be the highest-numberd item in an optimal solution S of W pounds and
items {1, . . . , n}. Then S ′ = S−{k} is an optimal solution for W −wk pounds
and items 1, . . . , k − 1, and the value of the solution S is vk plus the value of
the subproblem solution S′.

• We can express the above optimal-substructure observation in the following formula

Define c[i, w] to be the value of an optimal solution for items 1...i and maximum weight
w. Then

c[i, w] =


0 if i = 0 or w = 0
c[i− 1, w] if wi > w
max (vi + c[i− 1, w − wi], c[i− 1, w]) if i > 0 and wi ≤ w

This says that the value of a solution for item i is either includes item i, in which case
it is vi plus a subproblem solution for i − 1 items and the weight excluding wi, or does
not include item i, in which case it is a subproblem solution of i− 1 items and the same
weight. This is, if the thief picks item i, he takes vi value, and he can choose from items
1...i− 1 up to the weight limit w −wi, and get c[i− 1, w −wi] additional value. On the
other hand, if he decides not to take item i, he can choose from items 1...i− 1 up to the
weight limit w, and get c[i−1, w] value. The better of these two choices should be made.

• Although the 0-1 knapsack problem doesn’t seem analogus to the LCS problem, the
above formula for c is similar to the LCS formula: initial values are 0, and other values
are computed from the inputs and “earlier” values of c. So the 0-1 knapsack problem is
like the LCS algorithm for finding the LCS of two sequences.



• The pseudocode is presented below.

The algorithm takes as inputs the maximum weight W , the number of items n, and the
two sequences v = 〈v1, v2, . . . vn〉 and w = 〈w1, w2, . . . wn〉. It stores the c[i, w] values in
the table of c[0...n, 0...W ] whose entries are computed row-major order (This is, the first
row of c is filled from left to right, then the second row, and so on.) At the end of the
computation, c[n,W ] contains the maximum value the thief can take.

Dynamic 0-1 Knapsack(v,w,n,W)

for w = 0 to W

c[0,w] = 0

for i = 1 to n

c[i,0] = 0

for w = 1 to W

if w[i] <= w then

if v[i] + c[i-1,w-w[i]] > c[i-1,w] then

c[i,w] = v[i] + c[i-1,w-w[i]]

else

c[i,w] = c[i-1,w]

else

c[i,w] = c[i-1,w]

• The set of items to take can be deduced from the c-table by starting at c[n,W ] and
tracing where the optimal values came from.

– If c[i, w] = c[i − 1, w], item i is not part of the solution, and we continue tracing
with c[i− 1, w].

– Otherwise item i is part of the solution, and we continue tracing with c[i−1, w−wi].

• The above algorithm takes Θ(nW ) time total:

– Θ(nW ) to fill in the c table, Θ(1) per entry.

– O(n) time to trace the solution (why?)

• Example: Let n = 9, v = 〈2, 3, 3, 4, 4, 5, 7, 8, 8〉, w = 〈3, 5, 7, 4, 3, 9, 2, 11, 5〉, and W = 15.

The calculated c-table is

w → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i = 1 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2

i = 2 0 0 0 2 2 3 3 3 5 5 5 5 5 5 5 5

i = 3 0 0 0 2 2 3 3 3 5 5 5 5 6 6 6 8

i = 4 0 0 0 2 4 4 4 6 6 7 7 7 9 9 9 9

i = 5 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

i = 6 0 0 0 4 4 4 6 8 8 8 10 10 11 11 11 13

i = 7 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

i = 8 0 0 7 7 7 11 11 11 13 15 15 15 17 17 18 18

i = 9 0 0 7 7 7 11 11 15 15 15 19 19 19 21 23 23

By the above c-table, we know

– The optimal value is c[9, 15] = 23.

– The set of items to take is S = {9, 7, 5, 4} (why?)


