ECS20 Lecture Notes on

Final Review

March 11, 2020

Review material

1. Lecture notes and related handouts
2. Homework problems sets 1-8 and solutions
3. Quizzes $1-7$ and solutions
4. Midterms and solutions
5. Final review exercises and solutions
6. Set theory

- $A=B$ iff $A \subseteq B$ and $B \subseteq A$.
- Set operations/algebra $A \cup B, A \cap B, A^{c}, A \backslash B, A \oplus B$
- Finite set, cardinality, and inlusion-exclusion principles
- Power set
$n(P(S))=2^{n(S)}$
- Partition

2. Relations

- Relation $R \subseteq A \times B$
- Inverse relation $R^{-1}=\{(b, a) \mid(a, b) \in R\}$.
- Representations
- Compositions
- Types of relations:
reflective, symmetric, antisymmetric, transitive
- Eequivalence relation and partition

3. Functions

- Composition
- One-to-one, onto, and invertible
- Frequently used functions:
permutation, floor, ceiling, $k(\bmod m)$, exponential, logarithm
- Sequences and summations
- Recursively defined functions

4. Logic

- Proposition $\in\{T, F\}$
- Compound propositions and truth tables negation, conjunction, disjunction, exclusive disjunction $\neg p, p \wedge q, p \vee q, p \oplus q$
- Implication, bicondition and truth tables $p \rightarrow q, p \leftrightarrow q$
- Logical equivalence ($p \leftrightarrow q$ is a tautology)
- Propositional functions $P(x)$
- Universal and existential quantifications
$\forall x P(x), \quad \exists x P(x)$

5. Proof techniques

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Constructive proof
- Proof by counterexample
- Proof by mathematical induction

6. Integer and integer algorithms

- Divisibility $a \mid b$
- The division algorithm $a=b \cdot q+r$
- Fundamental theorem of arithmetic (prime factorization)
- $\operatorname{gcd}(a, b)$
- Algorithms for computing $\operatorname{gcd}(a, b)$
(1) Prime factorization based algorithm
(2) Euclidean algorithm
- Modular arithmetic $a(\bmod m)$

Congruence relation $a \equiv b(\bmod m)$

7. Counting

- Basic rules: the sum rule and the product rule
- Inclusion-exclusion rule

$$
n\left(A_{1} \cup A_{2}\right)=n\left(A_{1}\right)+n\left(A_{2}\right)-n\left(A_{1} \cap A_{2}\right)
$$

- Mathematical functions for counting:
- factorial
- binomial coefficient function,
- the binomial theorem for $(x+y)^{n}$,
- Pascal's identity/triangle
- r-Permutation $P(n, r)$
- r-Combination $C(n, r)$
- The pigeonhole principle $\left\lceil\frac{N}{k}\right\rceil=m$

8. Recursion

- Counting via recursion
- Solving first-order linear recurrence relations of the form

$$
a_{n}=c_{1} a_{n-1}+c_{0}
$$

- Solving 2nd-order homogeneous linear recurrence relations with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

- Solving non-homogeneous linear recurrence relations of the form

$$
\begin{aligned}
& a_{n}=c_{1} a_{n-1}+f(n) \\
& a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+f(n)
\end{aligned}
$$

where $f(n)$ is some special type of function that we can start with an educated guess for a particular solution.
9. Discrete probability

- Experiment, sample space, event
- Probability of an event $p(E)$
- Probability of combinations of events

$$
p(\overline{(} E))=1-p(E)
$$

$$
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)
$$

- Conditional probability $p(E \mid F)=\frac{p(E \cap F)}{p(F)}$
- Independency $p(E \cap F)=p(E) \cdot p(F)$
- Random variables*
- Distribution*
- Expectation, variance, standard derivation*
- Chebyshev's inequality*
* skip for the final

10. Graphs and trees

- Notion of a graph
- The hand-shaking theorem
- four ways for graph representations
- graph isomorphism
- Special types of graphs

$$
K_{n}, C_{n}, W_{n}, Q_{n}, K_{m, n}
$$

- Connectivity
- counting the number of different paths using A^{k}
- Euler path/cycle - edge
- Hamilton path/cycle - vertex

10. Graphs and trees

- Planar graphs
- Planar representation
- Euler's formula: $v-e+r=2$
- Every planar graph is 4-coloable
- Tree
- Equivalent statements of a tree
- Rooted tree
- m-ary tree
- Binary search tree

