ECS20 Lecture Notes on

Final Review

March 11, 2020

1/13

Review material

- 1. Lecture notes and related handouts
- 2. Homework problems sets 1-8 and solutions
- 3. Quizzes 1-7 and solutions
- 4. Midterms and solutions
- 5. Final review exercises and solutions

1. Set theory

- $\blacktriangleright A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A.$
- Set operations/algebra $A \cup B, \ A \cap B, \ A^c, \ A \setminus B, \ A \oplus B$
- Finite set, cardinality, and inlusion-exclusion principles
- Power set $n(P(S)) = 2^{n(S)}$

2. Relations

- $\blacktriangleright \quad \mathsf{Relation} \ R \subseteq A \times B$
- lnverse relation $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$
- Representations
- Compositions
- Types of relations: reflective, symmetric, antisymmetric, transitive
- Eequivalence relation and partition

- 3. Functions
 - Composition
 - One-to-one, onto, and invertible
 - Frequently used functions: permutation, floor, ceiling, k (mod m), exponential, logarithm
 - Sequences and summations
 - Recursively defined functions

- 4. Logic
 - Proposition $\in \{T, F\}$
 - Compound propositions and truth tables negation, conjunction, disjunction, exclusive disjunction ¬p, p∧q, p∨q, p⊕q
 - Implication, bicondition and truth tables $p \rightarrow q, \ p \leftrightarrow q$
 - Logical equivalence ($p \leftrightarrow q$ is a tautology)
 - Propositional functions P(x)
 - ► Universal and existential quantifications $\forall x P(x), \exists x P(x)$

- 5. Proof techniques
 - Direct proof
 - Proof by contraposition
 - Proof by contradiction
 - Constructive proof
 - Proof by counterexample
 - Proof by mathematical induction

- 6. Integer and integer algorithms
 - Divisibility a | b
 - The division algorithm $a = b \cdot q + r$
 - Fundamental theorem of arithmetic (prime factorization)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

8/13

- ▶ gcd(*a*, *b*)
- Algorithms for computing gcd(a, b)

 Prime factorization based algorithm
 Euclidean algorithm

 Modular arithmetic a (mod m)
 - Congruence relation $a \equiv b \pmod{m}$

7. Counting

Basic rules: the sum rule and the product rule

► Inclusion-exclusion rule $n(A_1 \cup A_2) = n(A_1) + n(A_2) - n(A_1 \cap A_2)$

Mathematical functions for counting:

- factorial
- binomial coefficient function,
- the binomial theorem for $(x+y)^n$,
- Pascal's identity/triangle
- r-Permutation P(n,r)
- r-Combination C(n,r)

• The pigeonhole principle
$$\left\lceil \frac{N}{k} \right\rceil = m$$

8. Recursion

- Counting via recursion
- Solving first-order linear recurrence relations of the form $a_n = c_1 a_{n-1} + c_0$
- Solving 2nd-order homogeneous linear recurrence relations with constant coefficients

 $a_n = c_1 a_{n-1} + c_2 a_{n-2}$

Solving non-homogeneous linear recurrence relations of the form $a_n = c_1 a_{n-1} + f(n)$

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + f(n)$

where f(n) is some special type of function that we can start with an educated guess for a particular solution.

- 9. Discrete probability
 - Experiment, sample space, event
 - Probability of an event p(E)
 - Probability of combinations of events $p(\overline{(E)}) = 1 - p(E)$ $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$

• Conditional probability
$$p(E|F) = \frac{p(E \cap F)}{p(F)}$$

- Independency $p(E \cap F) = p(E) \cdot p(F)$
- Random variables*
- Distribution*
- Expectation, variance, standard derivation*
- Chebyshev's inequality*
- * skip for the final

10. Graphs and trees

- Notion of a graph
 - The hand-shaking theorem
 - four ways for graph representations
 - graph isomorphism
- Special types of graphs

 K_n , C_n , W_n , Q_n , $K_{m,n}$

- Connectivity
 - counting the number of different paths using A^k
 - Euler path/cycle edge
 - Hamilton path/cycle vertex

10. Graphs and trees

- Planar graphs
 - Planar representation
 - Euler's formula: v e + r = 2
 - Every planar graph is 4-coloable
- Tree
 - Equivalent statements of a tree
 - Rooted tree
 - *m*-ary tree
 - Binary search tree