1. Recall: Euclidean algorithm for computing $\operatorname{gcd}(a, b)$ of two nonnegative integers with $a \geq b$.

Let $r_{0}=a$, and $r_{1}=b$, then by successively apply the division algorithm, we obtain

$$
\begin{aligned}
a=r_{0} & =r_{1} \cdot q_{1}+r_{2}, & & 0 \leq r_{2}<r_{1}=b \\
r_{1} & =r_{2} \cdot q_{2}+r_{3}, & & 0 \leq r_{3}<r_{2}, \\
& \vdots & & \\
r_{n-2} & =r_{n-1} \cdot q_{n-1}+r_{n}, & & 0 \leq r_{n}<r_{n-1} \\
r_{n-1} & =r_{n} \cdot q_{n}+0 . & &
\end{aligned}
$$

Consequently, we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
$$

The number of divisions used by the Euclidean algorithm is $n$.
2. The Euclidean algorithm can be simply expressed by the following recursive form:

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b)
$$

with the condition $\operatorname{gcd}(c, 0)=c$ when $c>0$.
3. Pseudocode for $\operatorname{gcd}(a, b)$ with $a \geq b$.

```
procedure gcd(a,b)
if b = 0 then
    gcd(a,b) = a
else
    gcd(a,b) := gcd( b, a mod b)
endif
```

4. Complexity of the Euclidean algorithm

Lamé's theorem: The number of divisions used by the Euclidean algorithm to find $\operatorname{gcd}(a, b)$ is less than or equal to 5 times the number of decimal digits in $b$, i.e.,

$$
n \leq 5 k
$$

where $k=\left\lfloor\log _{10} b\right\rfloor+1 .{ }^{1}$
5. Before we prove Lamé's theorem, let us prove the following result.

Lemma. Let $f_{n}$ be the Fibonacci sequence, namely $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$ and $f_{0}=0$ and $f_{1}=1$. Then $f_{n}>\alpha^{n-2}$ for $n \geq 3$, where $\alpha=\frac{1}{2}(1+\sqrt{5})$ is the root of $\alpha^{2}-\alpha-1=0$.

Proof. We use (strong) mathematical induction. Let $P(n)$ be the statement $f_{n}>\alpha^{n-2}$. We want to show that $P(n)$ is true whenever $n \geq 3$.

[^0]Basis step: First note that

$$
\alpha<2=f_{3}, \quad \alpha^{2}=(3+\sqrt{5}) / 2<3=f_{4},
$$

So $P(3)$ and $P(4)$ are true.
Inductive step: Assume that $P(j)$ is true, namely, $f_{j}>\alpha^{j-2}$ for all integers $j$ with $3 \leq j \leq k$ for some $k \geq 4$.
We now show that $P(k+1)$ is true, that is $f_{k+1}>\alpha^{k+1-2}=\alpha^{k-1}$. In fact,

$$
\begin{aligned}
f_{k+1} & =f_{k}+f_{k-1} & & \\
& >\alpha^{k-2}+\alpha^{k-3} & & \text { (by the inductive hypothesis) } \\
& =(\alpha+1) \alpha^{k-3} & & \text { (since } \left.\alpha \text { is a root of } x^{2}-x-1=0\right) \\
& =\alpha^{2} \cdot \alpha^{k-3}=\alpha^{k-1} . & &
\end{aligned}
$$

It follows that $P(k+1)$ is true. This completes the proof.
6. Proof of Lamé's theorem

By the Euclidean algorithm, we know

- $r_{0}>r_{1}>r_{2}>\cdots>r_{n-1}>r_{n}>0$.
- $q_{1}, q_{2}, \ldots, q_{n-1} \geq 1$.
- $q_{n} \geq 2$ since $r_{n-1}>r_{n}>0$.

By these facts, we have

$$
\begin{aligned}
r_{n} & \geq 1=f_{2} \\
r_{n-1}=r_{n} q_{n} & \geq 2 r_{n} \geq 2 f_{2}=f_{3} \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & \geq r_{n-1}+r_{n} \geq f_{3}+f_{2}=f_{4} \\
& \vdots \\
r_{2}=r_{3} q_{3}+r_{4} & \geq r_{3}+r_{4} \geq f_{n-1}+f_{n-2}=f_{n} \\
b=r_{1}=r_{2} q_{2}+r_{3} & \geq r_{2}+r_{3} \geq f_{n}+f_{n-1}=f_{n+1}
\end{aligned}
$$

Now by the last inequality and Lemma in item 5, we have

$$
b \geq f_{n+1} \geq \alpha^{n-1}
$$

Therefore

$$
\log _{10} b \geq \log _{10} \alpha^{n-1}=(n-1) \log _{10} \alpha>(n-1) \cdot \frac{1}{5}
$$

where we the fact that $\log _{10} \alpha \approx 0.209>\frac{1}{5}$. Consequently. we have

$$
n \leq 5 k
$$

where $k$ is the number of decimal digits in $b$.
7. As an example of applying Lamé's theorem. If $b$ has 3 dicimal digits (whatever the size of $a$ ), Lemé's theorem tells us that the Eculidean algorithm will take less than or equal to $5 \cdot(3+1)=20$ divisions to find $\operatorname{gcd}(a, b)$.


[^0]:    ${ }^{1}$ If $b$ has $k$ decimal digits, then $b<10^{k}$ and $\log _{10} b<k$. Precisely, the number $k$ of the decimal digits in $b$ is $k=\left\lfloor\log _{10} b\right\rfloor+1$, which is less than or equal to $\log _{10} b+1$.

