
ECS20 Handout Euclidean Algorithm

1. Recall: Euclidean algorithm for computing gcd(a, b) of two nonnegative integers with a ≥ b.
Let r0 = a, and r1 = b, then by successively apply the division algorithm, we obtain

a = r0 = r1 · q1 + r2, 0 ≤ r2 < r1 = b,

r1 = r2 · q2 + r3, 0 ≤ r3 < r2,
...

rn−2 = rn−1 · qn−1 + rn, 0 ≤ rn < rn−1,

rn−1 = rn · qn + 0.

Consequently, we have

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = · · · = gcd(rn, 0) = rn.

The number of divisions used by the Euclidean algorithm is n.

2. The Euclidean algorithm can be simply expressed by the following recursive form:

gcd(a, b) = gcd(a mod b, b)

with the condition gcd(c, 0) = c when c > 0.

3. Pseudocode for gcd(a, b) with a ≥ b.

procedure gcd(a,b)

if b = 0 then

gcd(a,b) = a

else

gcd(a,b) := gcd( b, a mod b)

endif

4. Complexity of the Euclidean algorithm

Lamé’s theorem: The number of divisions used by the Euclidean algorithm to find gcd(a, b) is
less than or equal to 5 times the number of decimal digits in b, i.e.,

n ≤ 5k,

where k = blog10 bc+ 1.1

5. Before we prove Lamé’s theorem, let us prove the following result.

Lemma. Let fn be the Fibonacci sequence, namely fn = fn−1 + fn−2 for n ≥ 2 and f0 = 0 and
f1 = 1. Then fn > αn−2 for n ≥ 3, where α = 1

2(1 +
√

5) is the root of α2 − α− 1 = 0.

Proof. We use (strong) mathematical induction. Let P (n) be the statement fn > αn−2. We want
to show that P (n) is true whenever n ≥ 3.

1If b has k decimal digits, then b < 10k and log10 b < k. Precisely, the number k of the decimal digits in b is
k = blog10 bc+ 1, which is less than or equal to log10 b+ 1.
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Basis step: First note that

α < 2 = f3, α2 = (3 +
√

5)/2 < 3 = f4,

So P (3) and P (4) are true.

Inductive step: Assume that P (j) is true, namely, fj > αj−2 for all integers j with 3 ≤ j ≤ k for
some k ≥ 4.

We now show that P (k + 1) is true, that is fk+1 > αk+1−2 = αk−1. In fact,

fk+1 = fk + fk−1

> αk−2 + αk−3 (by the inductive hypothesis)

= (α+ 1)αk−3 (since α is a root of x2 − x− 1 = 0)

= α2 · αk−3 = αk−1.

It follows that P (k + 1) is true. This completes the proof. 2

6. Proof of Lamé’s theorem

By the Euclidean algorithm, we know

• r0 > r1 > r2 > · · · > rn−1 > rn > 0.

• q1, q2, . . . , qn−1 ≥ 1.

• qn ≥ 2 since rn−1 > rn > 0.

By these facts, we have

rn ≥ 1 = f2

rn−1 = rnqn ≥ 2rn ≥ 2f2 = f3

rn−2 = rn−1qn−1 + rn ≥ rn−1 + rn ≥ f3 + f2 = f4
...

r2 = r3q3 + r4 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn

b = r1 = r2q2 + r3 ≥ r2 + r3 ≥ fn + fn−1 = fn+1

Now by the last inequality and Lemma in item 5, we have

b ≥ fn+1 ≥ αn−1.

Therefore

log10 b ≥ log10 α
n−1 = (n− 1) log10 α > (n− 1) · 1

5
,

where we the fact that log10 α ≈ 0.209 > 1
5 . Consequently. we have

n ≤ 5k,

where k is the number of decimal digits in b.

7. As an example of applying Lamé’s theorem. If b has 3 dicimal digits (whatever the size of a),
Lemé’s theorem tells us that the Eculidean algorithm will take less than or equal to 5 · (3+1) = 20
divisions to find gcd(a, b).
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