Divisibility and division algorithm

1. If a and b are integers with $a \neq 0$, we say a divides b if there is an integer k such that $b=a k$. a is called a factor of b and b is a multiple of a.
Notation: $a \mid b$ when a divides b. $\quad a \quad \Varangle b$ when a does not divide b.
Examples: (a) $3 \mid 12$. (b) 3×7.
2. Essential properties: Let a, b, c be integers, then

- if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$ and $a \mid(b-c)$
- if $a \mid b$, then $a \mid b c$ for all integers c
- if $a \mid b$ and $b \mid c$, then $a \mid c$

3. Theorem (Division Algorithm): Let a and b be integers with $b \neq 0$. Then there exist unique integers q and r, such that

$$
a=b \cdot q+r \quad \text { and } \quad 0 \leq r<|b| .
$$

The number b is called the divisor, q is called the quotient and r is called the remainder (Note that r must be non-negative.)
Proof: Problems 11.17 and 11.18
Examples: (a) $101=11 \cdot 9+2$. (b) $-11=3 \cdot(-4)+1$.

The Fundamental Theorem of Arithmetic

1. A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and p. Otherwise, it is called composite.
Examples: 2, 3, 5, 7, 11, 13 are primes.
2. The Fundamental Theorem of Arithmetic ("prime factorization"): Every integer $n>1$ can be written as a product of primes.

Proof by induction: see the class website, click "more examples on mathematical induction".
Examples: (a) $100=2 \cdot 2 \cdot 5 \cdot 5=2^{2} \cdot 5^{2}$. (b) $999=3 \cdot 3 \cdot 3 \cdot 37=3^{3} \cdot 37$. (c) $1024=2^{10}$

Greatest common divisor and Euclidean algorithm

1. Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor (gcd) of a and b.
Notation: $\operatorname{gcd}(a, b)=d$.
Examples:
(a) $\operatorname{gcd}(24,36)=12$, note that the common divisors of 24 and 36 are $1,2,3,4,6,12$.
(b) $\operatorname{gcd}(17,22)=1$, note that 17 is a prime.
(c) $\operatorname{gcd}(1,123)=1$ and $\operatorname{gcd}(0,321)=321$
(d) $\operatorname{gcd}(12,-18)=6$, note that the common divisors of 12 and -18 are $\pm 1, \pm 2, \pm 3, \pm 6$.
2. Prime factorization based algorithm for computing $\operatorname{gcd}(a, b)$:
3. compute the prime factorization $a=2^{n_{1}} 3^{n_{2}} 5^{n_{3}} \ldots$
4. compute the prime factorization $b=2^{m_{1}} 3^{m_{2}} 5^{m_{3}} \ldots$
5. $\operatorname{gcd}(a, b)=2^{\min \left\{n_{1}, m_{1}\right\}} 3^{\min \left\{n_{2}, m_{2}\right\}} 5^{\min \left\{n_{3}, m_{3}\right\}} \ldots$

Example: By the prime factorizations of $120=2^{3} \cdot 3 \cdot 5$ and $500=2^{2} \cdot 5^{3}$,

$$
\operatorname{gcd}(120,500)=2^{\min \{3,2\}} 3^{\min \{1,0\}} 5^{\min \{1,3\}}=2^{2} 3^{0} 5^{1}=20
$$

3. Euclidean theorem: Let $a=b q+r$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Proof: Let

$$
\begin{aligned}
& A=\text { set of common divisors of } a \text { and } b \\
& B=\text { set of common divisors of } b \text { and } r .
\end{aligned}
$$

Then if we can show the following set identity:

$$
\begin{equation*}
A=B \tag{1}
\end{equation*}
$$

we have shown that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$, since both pairs must have the same greatest common divisor.

- Show that $A \subseteq B$: let $d \mid a$ and $d \mid b$, then $d \mid b q$. It follows that $d \mid a-b q$. Therefore $d \mid b$ and $d \mid r$.
- Show that $B \subseteq A$: let $d \mid b$ and $d \mid r$, then $d \mid b q$. It follows that $d \mid b q+r$. Therefore, $d \mid a$ and $d \mid b$.

Since $A \subseteq B$ and $B \subseteq A$, the set identity (1) is true!
4. Euclidean algorithm for computing $\operatorname{gcd}(a, b)$.

Let $r_{0}=a$ and $r_{1}=b$. By successively applying the division algorithm, we obtain

$$
\begin{aligned}
a=r_{0} & =r_{1} \cdot q_{1}+r_{2}, & & 0 \leq r_{2}<r_{1}=b, \\
r_{1} & =r_{2} \cdot q_{2}+r_{3}, & & 0 \leq r_{3}<r_{2}, \\
& \cdots & & \\
r_{n-2} & =r_{n-1} \cdot q_{n-1}+r_{n}, & & 0 \leq r_{n}<r_{n-1} \\
r_{n-1} & =r_{n} \cdot q_{n}+0 . & &
\end{aligned}
$$

Eventually, a remainder of zero must occur, since the sequence of remainders $a=r_{0}>r_{1}>$ $r_{2}>\cdots \geq 0$ cannot contain more than a terms. As a result, by Euclidean theorem, it follows that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
$$

Note: It can be shown that the number of divisions required by the Euclidean algorithm is $O(\log b)$, where assuming $a \geq b>0$
5. Example: Compute $\operatorname{gcd}(414,662)$

By Euclidean algorithm, we have

$$
\begin{aligned}
662 & =414 \cdot 1+248 \\
414 & =248 \cdot 1+166 \\
248 & =166 \cdot 1+82 \\
166 & =82 \cdot 2+2 \\
82 & =2 \cdot 41+0
\end{aligned}
$$

Hence $\operatorname{gcd}(414,662)=2$.
6. The Euclidean algorithm - pseudocode

```
procedure gcd(a,b: positive integers)
x := a
y := b
while y /= 0
    r := x mod y
    x := y
    y := r
end while
return x % x is the gcd(a,b)
```

7. By reversing the steps of Euclidean algorithm, we can find x and y such that $\operatorname{gcd}(a, b)=$ $a \cdot x+b \cdot y$.
Example: $\operatorname{gcd}(414,662)=2=414 \cdot 8+662 \cdot(-5)$.

Modular arithmetic.

1. Modular operation: $a(\bmod m)=r=$ the remainder after dividing a by $m>0$. (note, $0 \leq$ $r<m)$.
Examples: (a) $7(\bmod 3)=1$, since $7=3 \cdot 2+1$.
(b) $3(\bmod 7)=3$, since $3=7 \cdot 0+3$
(c) $-133 \bmod 9=2$, since $-133=9 \cdot(-15)+2$.
2. If a and b are integers, and m is a positive integer, then a is congruent to b modulo m if $m \mid(a-b)$.
Notation: $a \equiv b(\bmod m)$:
Examples: (a) $17 \equiv 5(\bmod 6)$,
(b) $24 \not \equiv 14(\bmod 6)$.
3. By the definition, we know that $a \equiv b(\bmod m)$ if and only if there is an integer k such that $a=b+k m$. Using this fact, we can prove the following properties of mudular arithmetic:
If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then
(a) $a+c \equiv b+d(\bmod m)$.
(b) $a c \equiv b d(\bmod m)$
4. Applications of congruences in Hashing function, random number generation, cryptology,
