
ECS20 Handout Integers and Integer Algorithms

Divisibility and division algorithm

1. If a and b are integers with a 6= 0, we say a divides b if there is an integer k such that b = ak.
a is called a factor of b and b is a multiple of a.

Notation: a | b when a divides b. a 6 | b when a does not divide b.

Examples: (a) 3 | 12. (b) 3 6 | 7.

2. Essential properties: Let a, b, c be integers, then

• if a | b and a | c, then a | (b + c) and a | (b− c)

• if a | b, then a | bc for all integers c

• if a | b and b | c, then a | c

3. Theorem (Division Algorithm): Let a and b be integers with b 6= 0. Then there exist unique
integers q and r, such that

a = b · q + r and 0 ≤ r < |b|.

The number b is called the divisor, q is called the quotient and r is called the remainder (Note
that r must be non-negative.)

Proof: Problems 11.17 and 11.18

Examples: (a) 101 = 11 · 9 + 2. (b) −11 = 3 · (−4) + 1.

The Fundamental Theorem of Arithmetic

1. A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and
p. Otherwise, it is called composite.

Examples: 2, 3, 5, 7, 11, 13 are primes.

2. The Fundamental Theorem of Arithmetic (“prime factorization”): Every integer n > 1 can
be written as a product of primes.

Proof by induction: see the class website, click “more examples on mathematical induction”.

Examples: (a) 100 = 2 · 2 · 5 · 5 = 22 · 52. (b) 999 = 3 · 3 · 3 · 37 = 33 · 37. (c) 1024 = 210

Greatest common divisor and Euclidean algorithm

1. Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called
the greatest common divisor (gcd) of a and b.

Notation: gcd(a, b) = d.

Examples:

(a) gcd(24, 36) = 12, note that the common divisors of 24 and 36 are 1, 2, 3, 4, 6, 12.

(b) gcd(17, 22) = 1, note that 17 is a prime.

(c) gcd(1, 123) = 1 and gcd(0, 321) = 321

(d) gcd(12,−18) = 6, note that the common divisors of 12 and −18 are ±1,±2,±3,±6.
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2. Prime factorization based algorithm for computing gcd(a, b):

1. compute the prime factorization a = 2n13n25n3 · · ·
2. compute the prime factorization b = 2m13m25m3 · · ·
3. gcd(a, b) = 2min{n1,m1}3min{n2,m2}5min{n3,m3} · · ·

Example: By the prime factorizations of 120 = 23 · 3 · 5 and 500 = 22 · 53,
gcd(120, 500) = 2min{3,2}3min{1,0}5min{1,3} = 223051 = 20

3. Euclidean theorem: Let a = bq + r. Then gcd(a, b) = gcd(b, r).

Proof: Let

A = set of common divisors of a and b

B = set of common divisors of b and r.

Then if we can show the following set identity:

A = B (1)

we have shown that gcd(a, b) = gcd(b, r), since both pairs must have the same greatest
common divisor.

• Show that A ⊆ B: let d | a and d | b, then d | bq. It follows that d | a − bq. Therefore
d | b and d | r.

• Show that B ⊆ A: let d | b and d | r, then d | bq. It follows that d | bq + r. Therefore,
d | a and d | b.

Since A ⊆ B and B ⊆ A, the set identity (1) is true! �.

4. Euclidean algorithm for computing gcd(a, b).

Let r0 = a and r1 = b. By successively applying the division algorithm, we obtain

a = r0 = r1 · q1 + r2, 0 ≤ r2 < r1 = b,

r1 = r2 · q2 + r3, 0 ≤ r3 < r2,

. . .

rn−2 = rn−1 · qn−1 + rn, 0 ≤ rn < rn−1,

rn−1 = rn · qn + 0.

Eventually, a remainder of zero must occur, since the sequence of remainders a = r0 > r1 >
r2 > · · · ≥ 0 cannot contain more than a terms. As a result, by Euclidean theorem, it follows
that

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn

Note: It can be shown that the number of divisions required by the Euclidean algorithm is
O(log b), where assuming a ≥ b > 0
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5. Example: Compute gcd(414, 662)

By Euclidean algorithm, we have

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2

82 = 2 · 41 + 0

Hence gcd(414, 662) = 2.

6. The Euclidean algorithm – pseudocode

procedure gcd(a,b: positive integers)

x := a

y := b

while y /= 0

r := x mod y

x := y

y := r

end while

return x % x is the gcd(a,b)

7. By reversing the steps of Euclidean algorithm, we can find x and y such that gcd(a, b) =
a · x + b · y.

Example: gcd(414, 662) = 2 = 414 · 8 + 662 · (−5).

Modular arithmetic.

1. Modular operation: a(modm) = r = the remainder after dividing a by m > 0. (note, 0 ≤
r < m).

Examples: (a) 7(mod3) = 1, since 7 = 3 · 2 + 1.

(b) 3(mod7) = 3, since 3 = 7 · 0 + 3

(c) −133 mod 9 = 2, since −133 = 9 · (−15) + 2.

2. If a and b are integers, and m is a positive integer, then a is congruent to b modulo m if
m|(a− b).

Notation: a ≡ b (mod m):

Examples: (a) 17 ≡ 5(mod 6),

(b) 24 6≡ 14(mod 6).

3. By the definition, we know that a ≡ b (mod m) if and only if there is an integer k such that
a = b + km. Using this fact, we can prove the following properties of mudular arithmetic:

If a ≡ b (mod m) and c ≡ d (mod m), then

(a) a + c ≡ b + d (mod m).

(b) ac ≡ bd (mod m)

4. Applications of congruences in Hashing function, random number generation, cryptology, ....
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