ECS20 Handout Integers and Integer Algorithms

Divisibility and division algorithm

1.

If @ and b are integers with a # 0, we say a divides b if there is an integer k such that b = ak.
a is called a factor of b and b is a multiple of a.

Notation: a | b when a divides b. a [b when a does not divide b.
Examples: (a) 3]12. (b)3 fT.

. Essential properties: Let a, b, ¢ be integers, then

e ifa|banda|c thenal| (b+c¢)andal| (b—rc)
e if a | b, then a | be for all integers ¢

e ifa|bandb|c, thenalc

. Theorem (Division Algorithm): Let a and b be integers with b # 0. Then there exist unique

integers ¢ and r, such that
a=b-q+r and 0<r <|bl.

The number b is called the divisor, ¢ is called the quotient and r is called the remainder (Note
that r must be non-negative.)
Proof: Problems 11.17 and 11.18

Examples: (a) 101 =11-9+2. (b) —11=3-(—4)+ 1.

The Fundamental Theorem of Arithmetic

1.

A positive integer p greater than 1 is called prime if the only positive factors of p are 1 and
p. Otherwise, it is called composite.

Examples: 2, 3, 5, 7, 11, 13 are primes.

. The Fundamental Theorem of Arithmetic (“prime factorization”): Every integer n > 1 can

be written as a product of primes.
Proof by induction: see the class website, click “more examples on mathematical induction”.
Examples: (a) 100 =2-2-5-5=22.52 (b) 999 =3-3-3-37=3%-37. (c) 1024 = 210

Greatest common divisor and Euclidean algorithm

1.

Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called
the greatest common divisor (ged) of a and b.

Notation: ged(a,b) = d.

Examples:

(a) ged(24,36) = 12, note that the common divisors of 24 and 36 are 1, 2, 3, 4, 6, 12.
(b) ged(17,22) = 1, note that 17 is a prime.

(c) ged(1,123) =1 and ged(0,321) = 321

(d) ged(12, —18) = 6, note that the common divisors of 12 and —18 are +1, +2, +3, +6.



2. Prime factorization based algorithm for computing ged(a, b):

1. compute the prime factorization a = 2" 3"25"3 . ..

2. compute the prime factorization b = 2™13™M25™3 . ..
3. ged(a, b) = 2min{nimitgmin{nz,mo} smin{ngms} ...

Example: By the prime factorizations of 120 = 23 -3 -5 and 500 = 22 - 53,
ng(lzo, 500) — omin{3,2} gmin{1,0} gmin{1,3} _ 923051 _ 9

3. Euclidean theorem: Let a = bq + . Then gcd(a,b) = ged(b, 7).
Proof: Let

A = set of common divisors of @ and b

B = set of common divisors of b and r.
Then if we can show the following set identity:
A=B (1)

we have shown that ged(a,b) = ged(b,r), since both pairs must have the same greatest
common divisor.

e Show that A C B: let d | a and d | b, then d | bg. It follows that d | a — bq. Therefore

d|band d|r.
e Show that B C A: let d | b and d | r, then d | bg. It follows that d | bg + r. Therefore,
d|aandd|b.
Since A C B and B C A, the set identity (1) is true! 0.

4. Euclidean algorithm for computing ged(a, b).

Let r9g = a and r1 = b. By successively applying the division algorithm, we obtain

a=ry = T1-q+7o, 0<ry<ry=b,
T = T2-q2+T3, 0<r3<rmry,
Th—2 = Tp—1'Qn—1+Tn, 0<r, < Tn—1,
Tl = Tn-qn+0.

Eventually, a remainder of zero must occur, since the sequence of remainders a = rg > r; >
ro > --- > 0 cannot contain more than a terms. As a result, by Euclidean theorem, it follows
that

ged(a, b) = ged(ro,m) = ged(ry,re) = -+ - = ged(rp—1, ) = ged(rp, 0) = 7y

Note: It can be shown that the number of divisions required by the Euclidean algorithm is
O(logb), where assuming a > b > 0



5. Example: Compute ged(414,662)

By Euclidean algorithm, we have

662 = 414-1+ 248

414 = 248-1+4 166
248 = 166-1+ 82
166 = 82-2+2

82 = 2-41+0
Hence ged(414,662) = 2.

6. The Euclidean algorithm — pseudocode

procedure gcd(a,b: positive integers)

X 1= a
y :=Db
while y /= 0
r :=xmod y
X 1=y
y i=r
end while
return x % x is the gcd(a,b)

7. By reversing the steps of Euclidean algorithm, we can find = and y such that ged(a,b) =
a-x+b-y.
Example: gcd(414,662) =2 =414 -8+ 662 - (—5).
Modular arithmetic.

1. Modular operation: a(modm) = r = the remainder after dividing a by m > 0. (note, 0 <
r<m).

Examples: (a) 7(mod3) =1, since 7=3-2+ 1.
(b) 3(mod7) =3, since 3=7-0+3
(¢) =133 mod 9 = 2, since —133 =9 (—15) + 2.
2. If a and b are integers, and m is a positive integer, then a is congruent to b modulo m if
m|(a — b).
Notation: a = b (mod m):
Examples: (a) 17 = 5(mod 6),
(b) 24 # 14(mod 6).
3. By the definition, we know that a = b (mod m) if and only if there is an integer k such that
a = b+ km. Using this fact, we can prove the following properties of mudular arithmetic:
If a = b (mod m) and ¢ = d (mod m), then
(a) a4+ c=b+d (mod m).
(b) ac = bd (mod m)

4. Applications of congruences in Hashing function, random number generation, cryptology, ....



