1. An experiment is a procedure that yields one of a given set of possible outcomes.

The sample space of the experiments is the set of all possible outcomes, denoted as S.
An event is a subset of the sample space, denoted as $E . E \subseteq S$.
2. If S is a finite sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is

$$
p(E)=\frac{n(E)}{n(S)}
$$

Property: $0 \leq p(E) \leq 1$.
Example 1. A box contains four blue balls and five red balls. What is the probability that a ball randomly chosen from the box is blue?

Example 2. What is the probability that when two dice are rolled, the sum of the numbers on two dice is 7 ?

Example 3. Lottery awards people who correctly choose a set of six numbers out of the first n positive integers. What is the probability that a person picks the correct six numbers out of 40 ?
3. Theorem. Let E be an event in a sample space S. The probability of the complementary event \bar{E} is given by

$$
p(\bar{E})=1-p(E) .
$$

This is an alternative strategy for finding the probability of an event when a direct approach does not work well.

Example 4. A sequence of 10 bits is randomly generated. What's the probability that at least one of these bits is 0 ?

Example 5. A box contains six red balls and four black balls. Four balls are selected at random from the box.
(a) What is the probability the event E that two of the selected balls will be red and two will be black?
(b) If F is the event that no more than two of the balls are red, compute the probability of F.
(c) If G is the event that no more than three of the balls are red, compute the probability of G.
4. The probability of combinations of events

Theorem. Let E_{1} and E_{2} be events in the sample space S, then

$$
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)
$$

Example 6. What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5 ?
5. Let E and F be events with $p(F)>0$. The conditional probability of E given F, denoted by $p(E \mid F)$, is defined as

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)}
$$

Example 7. A bit string of length four is generated at random. What is the probability that it contains at least two consecutive 0 s, given that its first bit is a 0 ?

Example 8. What is the conditional probability that a family with two children have two boys, given they have at least one boy?
6. The events E and F are independent if and only if $p(E \cap F)=p(E) p(F)$.

Example 9. Suppose E is the event that a randomly generated bit string of length four begins with a 1 and F is the event that its bit string contains an even number of 1 s. Are E and F independent?

Example 10. continue Example 8, assume that each of the four ways of a family can have two children is equally likely. Are the event E that a family with two children has two boys, and the event F that a family two children has at least one boy independent?

Example 1. There are 9 possible outcomes. Hence the probability of that a blue ball is chosen is 4/9.

Example 2. There are a total of 36 outcomes, $S=\{(i, j) \mid 1 \leq i, j \leq 6\}$ and $n(S)=36$. The set E of successful outcomes: $E=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$. Therefore, $p(E)=\frac{n(E)}{n(S)}=$ $6 / 36=1 / 6$.

Example 3. There is only one winning combination. The total number of ways to choose six numbers out of 40 is $C(40,6)=40!/(34!6!)=3,838,380$. Therefore, the probability of picking a winning combination is $1 / 3,838,380 \approx 0.00000026$.

Example 4. Let E be the event that at least one of the 10 bits is $0 . \bar{E}$ is the event that all bits are 1s. Therefore,

$$
p(E)=1-p(\bar{E})=1-\frac{n(\bar{E})}{n(S)}=1-\frac{1}{2^{10}}=\frac{1023}{1024}
$$

Example 5.

(a).

$$
p(E)=\frac{C(6,2) \cdot C(4,2)}{C(10,4)}=\frac{15 \times 6}{210}=\frac{90}{210} \approx 0.42
$$

(b)

$$
p(F)=\frac{C(6,0) \cdot C(4,4)+C(6,1) \cdot C(4,3)+C(6,2) \cdot C(4,2)}{C(10,4)}=\frac{1+24+90}{210}=\frac{115}{210} \approx 0.55
$$

(c) Method 1: use the same way of solving problem (b), we have

$$
\begin{aligned}
p(G) & =\frac{C(6,0) \cdot C(4,4)+C(6,1) \cdot C(4,3)+C(6,2) \cdot C(4,2)+C(6,3) \cdot C(4,1)}{C(10,4)} \\
& =\frac{1+24+90+80}{210}=\frac{195}{210} \approx 0.93
\end{aligned}
$$

Method 2: Let \bar{G} be the event that all four balls are red. Then

$$
p(G)=1-p(\bar{G})=1-\frac{C(6,4)}{C(10,4)}=1-\frac{15}{210}=\frac{195}{210} \approx 0.93
$$

Example 6. Let E_{1} be the events that the integer selected is divisible by 2 , and Let E_{2} be the events that the integer selected is divisible by 5 . It is easy to see that $n\left(E_{1}\right)=50, n\left(E_{2}\right)=20$ and $n\left(E_{1} \cap E_{2}\right)=10$. It follows that

$$
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)=\frac{50}{100}+\frac{20}{100}-\frac{10}{100}=\frac{3}{5}
$$

Example 7. Let E be the event that a bit string of length four contains at least two consecutive 0s:

$$
E=\{0000,0001,0010,0011,1000,1001,0100,1100\}
$$

Then $n(E)=8$ and $p(E)=8 / 16$.
Let F be the event that the first bit of a bit string of length four is a 0 :

$$
F=\{0000,0100,0010,0110,0011,0001,0011,0111\}
$$

Then $n(F)=8$ and $p(F)=8 / 16$.
Since $E \cap F=\{0000,0001,0010,0011,0100\}, p(E \cap F)=5 / 16$. Therefore, the conditional probability

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)}=\frac{5 / 16}{8 / 16}=\frac{5}{8}
$$

Example 8. Let E be the event that a family with two children has two boys, and let F be the event that a family with two children has at least one boy. Then

$$
S=\{B B, B G, G B, G G\}, \quad E=\{B B\}, \quad F=\{B B, B G, G B\}
$$

Then

$$
E \cap F=\{B B\}
$$

It follows that the conditional probability

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)}=\frac{1 / 4}{3 / 4}=\frac{1}{3} .
$$

Example 9. Since

$$
E=\{1000,1001,1010,1011,1100,1101,1110,1111\}
$$

and

$$
F=\{0000,0011,0101,0110,1001,1010,1100,1111\}
$$

we have

$$
E \cap F=\{1001,1100,1010,1111\}
$$

Therefore,

$$
p(E)=p(F)=8 / 16=1 / 2
$$

and

$$
p(E \cap F)=4 / 16=1 / 4
$$

Because

$$
p(E \cap F)=1 / 4=(1 / 2)(1 / 2)=p(E) p(F)
$$

we conclude that E and F are independent.

Example 10. Continue of Example 8. Because $E=\{B B\}$, and $p(F)=3 / 4$, and $p(E \cap F)=1 / 4$. Since $p(E \cap F)=1 / 4 \neq(1 / 4)(3 / 4)=p(E) p(F)$, the events E and F are not inpdendent.

