ECS20 Handout An introduction to Discrete Probability - Part II

1. A random variable X is a rule that assigns a numerical value to each outcome in the sample space S.
The set of numerical values assigned by X is called the range space, denoted as $R_{X}=$ $\left\{x_{1}, \ldots, x_{t}\right\}$.

Example 1. A pair of fair dice is tossed. The sample space S consists of the 36 outcomes (i, j), where $1 \leq i, j \leq 6$. Let X assign to each outcome in S the sum of two numbers, then X is a random variable with range space $R_{X}=\{2,3,4,5,6,7,8,9,10,11,12\}$.
2. Let X be a random variable on the sample space S with range space $R_{X}=\left\{x_{1}, \ldots, x_{t}\right\}$. Then X induces "a function f " which assigns probabilities p_{k} to the value $x_{k} \in R_{X}$ as follows:

$$
p_{k}=\underline{p\left(X=x_{k}\right)}=\text { sum of probabilities of outcomes in } S \text { whose value is } x_{k}
$$

Notation: $\underline{p\left(X=x_{k}\right)} \equiv \underline{p\left(\left\{s \mid X(s)=x_{k}, s \in S\right\}\right)}$.
Properties of p_{k} :
(1) $p_{k} \geq 0$
(2) $\sum_{k} p_{k}=1$
3. The set of ordered pairs $\left(x_{k}, p_{k}\right)$ for $k=1, \ldots, t$ is called the distribution of the random variable X.
4. If S is a finite sample space of equally likely outcomes, also called equiprobable space, and let $\left(x_{k}, p_{k}\right)$ be the distribution of a random variable X on S with the range space $R_{X}=$ $\left\{x_{1}, \ldots, x_{t}\right\}$. Then

$$
\begin{equation*}
p_{k}=\frac{\text { number of outcomes in } S \text { whose value is } x_{k}}{\text { number of outcomes in } S} . \tag{1}
\end{equation*}
$$

5. Example 2. Continue Example 1, the pair of "fair" dice is meant that we have the equiprobable (sample) space S. By expression (1), then the distribution of X is as follows:
$p(X=2)=1 / 36$, since there is one outcome $(1,1)$ whose sum is 2 .
$p(X=3)=2 / 36$, since there are two outcomes $(1,2)$ and $(2,1)$ whose sum is 3 .
$p(X=4)=3 / 36$, since there are three outcomes $(1,3),(2,2)$ and $(3,1)$ whose sum is 4 .
$p(X=5)=4 / 36$, since there are four outcomes $(1,4),(2,3),(3,2)$ and $(4,1)$ whose sum is 5 .
and $p(X=6)=5 / 36, p(X=7)=6 / 36, p(X=8)=5 / 36, p(X=9)=4 / 36$, $p(X=10)=3 / 36, p(X=11)=2 / 36, p(X=12)=1 / 36$.
The distribution is often written in a table as follows:

x_{k}	2	3	4	5	6	7	8	9	10	11	12
p_{k}	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 26$	$3 / 36$	$2 / 36$	$1 / 36$

6. Expectation (mean) of X :

$$
E(X) \equiv \sum_{k=1}^{t} x_{k} p_{k}
$$

7. Example 3. Suppose a fair coin is tossed six times. Then the number of heads which can occur with their respective probabilities is as follows:

$$
\begin{array}{c|ccccccc}
x_{k} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline p_{k} & 1 / 64 & 6 / 64 & 15 / 64 & 20 / 64 & 15 / 64 & 6 / 64 & 1 / 64
\end{array}
$$

The expected number of heads is
$E(X)=0 \cdot(1 / 64)+1 \cdot(6 / 64)+2 \cdot(15 / 64)+3 \cdot(20 / 64)+4 \cdot(15 / 64)+5 \cdot(6 / 64)+6 \cdot(1 / 64)=3$.
This agrees with our intuition that we expect that half of the tosses to be heads.

Example 4. Three horses a, b and c are in a race, and suppose that their respective probabilities of winning are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{6}$. Let X denote the payoff function for the winning horse, and suppose X pays $\$ 2, \$ 6$ and $\$ 9$ according as a, b or c wins the race. The expected payoff for the race is

$$
E(X)=X(a) p(a)+X(b) p(b)+X(c) p(c)=2 \cdot \frac{1}{2}+6 \cdot \frac{1}{3}+9 \cdot \frac{1}{6}=4.5
$$

8. The variance of X :

$$
\operatorname{Var}(X) \equiv \sum_{k=1}^{t}\left(x_{k}-E(X)\right)^{2} p_{k}
$$

The standard drivation of X :

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

9. Example 5, continue Example 3, the variance of X is

$$
\begin{aligned}
\operatorname{Var}(X)= & (0-3)^{2} \cdot(1 / 64)+(1-3)^{2} \cdot(6 / 64)+(2-3)^{2} \cdot(15 / 64)+ \\
& (3-3)^{2} \cdot(20 / 64)+(4-3)^{2} \cdot(15 / 64)+(5-3)^{2} \cdot(6 / 64)+(6-3)^{2} \cdot(1 / 64) \\
= & 1.5
\end{aligned}
$$

The standard derivation of heads is $\sigma=\sqrt{\operatorname{Var}(X)}=\sqrt{1.5} \approx 1.225$.
10. Chebyshev's inequality.

Let X be a random variable with expectation μ and standard derivation σ. Then for any positive number k, the probability that a value of X lies in the interval $[\mu-k \sigma, \mu+k \sigma]$ is at least $1-\frac{1}{k^{2}}$. That is

$$
p(|X-\mu| \leq k \sigma) \geq 1-\frac{1}{k^{2}}
$$

Chebyshev's inequality justisfies our intuition that for smaller σ, we would expect that X will be closer to μ.

