1. Find the solution of each of the following recurrence relations and initial conditions
(a) $a_{n}=3 a_{n-1}, \quad a_{0}=2$.
(b) $a_{n}=a_{n-1}+2, \quad a_{0}=3$.
(c) $a_{n}=2 a_{n-1}-1, \quad a_{0}=1$.
(d) $a_{n}=2 n a_{n-1}, \quad a_{0}=1$.
2. First-order and second-order linear recursions
6.11, 6.31, 6.32
3. Consider the nonhomogeneous linear recurrence relation $a_{n}=2 a_{n-1}+2^{n}$.
(a) Show that $a_{n}=n 2^{n}$ is a (particular) solution of this recurrence relation
(b) Find all solutions of this recurrence relation.
(c) Find the solutions of this recurrence relation with $a_{0}=2$.
4. (a) Determine values of the constants A and B such that $a_{n}=A n+B$ is a (particular) solution of recurrence relation $a_{n}=2 a_{n-1}+n+2$.
(b) Find all solution of this recurrence relation.
(c) Find the solutions of this recurrence relation with $a_{0}=4$.
5. (a) Determine value of the constant A such that $a_{n}=A 4^{n}$ is a (particular) solution of recurrence relation $a_{n}=-5 a_{n-1}-6 a_{n-2}+42 \cdot 4^{n}$.
(b) Find all solution of this recurrence relation.
(c) Find the solutions of this recurrence relation with $a_{1}=56$ and $a_{2}=278$.
6. Proof
6.34
