- 1. Find the solution of each of the following recurrence relations and initial conditions
 - (a) $a_n = 3a_{n-1}, \quad a_0 = 2.$
 - (b) $a_n = a_{n-1} + 2$, $a_0 = 3$.
 - (c) $a_n = 2a_{n-1} 1$, $a_0 = 1$.
 - (d) $a_n = 2na_{n-1}, \quad a_0 = 1.$
- 2. First-order and second-order linear recursions

6.11, 6.31, 6.32

- 3. Consider the nonhomogeneous linear recurrence relation $a_n = 2a_{n-1} + 2^n$.
 - (a) Show that $a_n = n2^n$ is a (particular) solution of this recurrence relation
 - (b) Find all solutions of this recurrence relation.
 - (c) Find the solutions of this recurrence relation with $a_0 = 2$.
- 4. (a) Determine values of the constants A and B such that $a_n = An + B$ is a (particular) solution of recurrence relation $a_n = 2a_{n-1} + n + 2$.
 - (b) Find all solution of this recurrence relation.
 - (c) Find the solutions of this recurrence relation with $a_0 = 4$.
- 5. (a) Determine value of the constant A such that $a_n = A4^n$ is a (particular) solution of recurrence relation $a_n = -5a_{n-1} 6a_{n-2} + 42 \cdot 4^n$.
 - (b) Find all solution of this recurrence relation.
 - (c) Find the solutions of this recurrence relation with $a_1 = 56$ and $a_2 = 278$.
- 6. Proof

6.34