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 The 2-Dimensional Hubbard Model

• QUEST is a Fortran 90/95 package that implements the Determinant Quantum 
Monte Carlo (DQMC) method for quantum electron simulations.  

• QUEST serves three purposes: (1) To improve simulation performance by using 
new algorithms, like delayed update, and by integrating modern numerical 
kernels. (2) To integrate existing programs by modularizing their computational 
components. (3) To assist new simulations development with, for example, the 
ability of creating new lattice geometries. 

• http://www.cs.ucdavis.edu/~bai/PETAMAT
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A critical computational kernel of the DQMC is 
to stably repeatedly compute the Green’s 
function G, which involving a long chain of 
matrix multiplications and the inversion of 
matrices whose time-fluctuating entries 
incorporate energy scales and the block and 
sparsity structures reflect the multiple length 
scales. For example, an equal-time Green’s 
function is of the form 

High Performance Computing

Publication: Z. Bai, C.-R. Lee, R.-C. Li and S. Xu, Stable solutions of linear systems involving long chain of matrix multiplications. To 
appear in Linear Algebra and its Applications, 2010

Parquet Approximation and QUEST 

QUEST allows the treatment of clusters of unprecedentedly large size. This 
allows for an accurate extraction of the interaction dependence of the 
antiferromagnetic order parameter (using finite-size scaling), so that one can map 
its evolution from the weak to the strong coupling Heisenberg limit. The lattices 
provide improved resolution of the Green’s function in momentum space, that will 
allow a more quantitative comparison with time-of-flight optical lattice 
experiments.

Publication: C. N. Varney, C.-R. Lee, Z. Bai, S. Chiesa, M. Jarrell and R. T. Scalettar, Quantum Monte Carlo study of the two-dimensional 
fermion Hubbard model. Phys. Rev. B. 80, 075116, (2009) 

QUEST has been used to test the accuracy of the Parquet approximation (PA). In 
the PA the fully irreducible vertex has been approximated by the bare interaction. 
Already at this level the PA performs significantly better than  other diagrammatic 
approaches and we plan to further improve it by using the fully irreducible vertex 
computed in QUEST.  

Evolution of the Momentum distribution . Color 
contour plot depiction of the momentum distribution 
n(k) and its gradient. (a) and (b) : Left to right, n(k) 
and its gradient at weak-coupling U=2t and fillings 
n=0.23, 0.41, 0.61, 0.79, and 1.0. (c) and (d) : same 
quantities at intermediate coupling U=4t and fillings 
n=0.21, 0.41, 0.59, 0.79, and 1.0. The increased 
breadth of the Fermi surface with interaction 
strength is evident. Calculations are performed on 
24 by 24  clusters at temperature T=t/8.

Comparison of Green’s function.  Single-particle Green 
function for a 4 by 4 Hubbard cluster and U=2t computed 
using three diagrammatic approaches and DQMC at half-
filling. For the temperature reported in the figure the PA 
result is very close to the DQMC one as compared to self-
consistent second-order perturbation theory and to the 
FLuctuation-EXchange approximation.

Publication: S. X. Yang, H. Fotso, J. Liu, T. A. Maier, K. Tomko, E. F. D'Azevedo, R. T. Scalettar, T. Pruschke, M. Jarrell, Parquet approximation 
for the 4x4 Hubbard cluster. arXiv:0906.4736

We have been conducting a range of synergistic activities on the development of 
stable and robust linear algebra solvers specifically designed to greatly expand 
the length scales of the DQMC simulation in QUEST. For example, 
mathematically, we show that the numerical solution x of the Green’s linear 
system of equations is weakly backward of a nearby Green’s linear system:

Publication: C.-R. Lee, I-H. Chung, Z. Bai, Parallelization of DQMC Simulation for Strongly Correlated Electron Systems.   In 
Proceedings of 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS 201). April 2010

Sequential DQMC simulation

Parallel Markov chain for DQMC simulation

Communication patterns for iterators, feeders and M-servers:

Singular value distributions of Green’s functions

IV. MAGNETIC CORRELATIONS

We turn now to two-particle properties, focusing on the
magnetic behavior. The real-space spin-spin correlation func-
tion is defined as

C!l" = #!nj+l↑ − nj+l↓"!nj↑ − nj↓"$ !4"

and measures the extent to which the z component of spin on
site j aligns with that on a site a distance l away. Although
defined in Eq. !4" using the z direction, C!l" is rotationally
invariant and in fact, we measure all three components to
monitor ergodicity in our simulations and average over all
directions to provide an improved estimator for the magnetic
properties.

The local moment #m2$=C!0,0"= #!nj↑−nj↓"2$ is the zero
separation value of the spin-spin correlation function. The
singly occupied states %↑ $ and %↓ $ have #m2$=1 while the
empty and doubly occupied ones %0$ and %↑↓$ have #m2$=0.
In the noninteracting limit, at half-filling, each of the four
possible site configurations is equally likely. Hence the aver-
age moment #m2$= 1

2 .
The on-site repulsion U suppresses the doubly occupied

configuration and hence also the empty one, if the total oc-
cupation is fixed at one fermion per site. Ultimately, charge
fluctuations are completely eliminated, #m2$→1 and the
Hubbard model maps onto the spin-1

2 Heisenberg Hamil-
tonian. This is illustrated in Fig. 4 for a 10!10 lattice. By
the time U=W=8t, the local moment has attained 90% of its
full value. Thermal fluctuations also inhibit local moment
formation but the data shown for different temperatures in
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FIG. 2. !Color online" Color contour plot depiction of the momentum distribution n!k" and its gradient !n!k". !a" Left to right, n!k" at
weak-coupling U=2t and fillings "=0.23, 0.41, 0.61, 0.79, and 1.0. !b" !n!k" for the same parameters. &!c" and !d"' Intermediate coupling
U=4t and fillings "=0.21, 0.41, 0.59, 0.79, and 1.0. The increased breadth of the Fermi surface with interaction strength is evident. The
lattice size=24!24 and inverse temperature #t=8 except at U=4t and fillings "=0.59 and 0.79, where the sign problem restricts the
simulation to inverse temperatures #t=6 and 4, respectively.
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FIG. 3. !Color online" As the interaction energy U increases, the
kinetic energy declines. Here we show teff / t, the ratio between the
expectation value of #cj+x̂$

† cj$$ at U with its value at U=0 for a
10!10 lattice. Strong-coupling and perturbative graphs are also
shown for #t=12.
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Cluster DMFT Solver with Linear 
Scaling in Inverse Temperature
Dynamical Mean Field Theory (DMFT) is a powerful approach to study magnetism, 
superconductivity, and metal-insulator transitions in solids. The approach has 
traditionally relied on the Hirsch-Fye algorithm (HF-QMC) that scales as the cube of 
the inverse temperature. We have developed a method of comparable accuracy 
which exhbits linear scaling (see figure) using ideas from determinant Quantum 
Monte Carlo (DQMC).

Performance improvemnent. The CPU time required 
for updating and measuring in the Hirsch-Fye-QMC 
and DQMC algorithms versus the number of time 
slices on a 4 by 4 cluster. All other quantities are kept 
constant. The lines show power-law fits of the data. 
The diamond symbols show the CPU time in DQMC 
with a constant time step (decreasing temperature) 
where orthogonalization is performed to stabilize the 
matrix multiplications.

Agreement of properties computed using DQMC 
and  Hirsch-Fye-QMC. a) the Matsubara frequency 
quasiparticle fraction versus temperature, b) the 
unscreened moment versus temperature, c) the 
average sign versus inverse temperature,  d) the 
Green’s function at a low temperature versus 
imaginary time. Panel c) includes the sign for a 
simulation where the cluster is not coupled with the 
infinite mean-field medium and shows how the 
coupling helps in reaching significantly lower 
temperatures.

Publication:  E. Khatami, C. R. Lee, Z. J. Bai, R. T. Scalettar, and M. Jarrell. Cluster solver for dynamical mean field theory with linear 
scaling in inverse temperature. Phys. Rev. E 81, 056703 (2010)
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agreement between the two density of states in the low en-
ergy region. However, there is a slight difference in the high-
energy region which would presumably vanish by increasing
N!.

V. SCALING

As discussed in previous sections, the linear scaling of the
DQMC algorithm with the number of time slices is the main
advantage of this cluster solver over HF-QMC. The updating
process in HF-QMC, which is the most expensive step in this
algorithm, scales like !NcL"3. This is a results of O!NcL"
changes in the field variable during each sweep and O!Nc

2L2"
operations to update the Green’s function for each change
using a rank-one updating mechanism. A similar argument
applies to the scaling in the DQMC, except that it costs
O(!Nc+NcN!"2) to update the inverse Green’s function after
each change in the field variable. Since the number of HHS
fields and therefore, the number of such updates is propor-
tional to L, the overall scaling of updates in DQMC is linear
in L. The scaling in the system size remains cubic as in other
QMC methods and is a big advantage over ED which scales
exponentially in the size. To show the linear behavior in L,
we plot the CPU time for updates versus L on the 4"4
cluster in Fig. 6!a". First, we compare this to that of HF-
QMC for the same model parameters and by setting #t
=2.5. At this fixed #, the product of matrices in DQMC is
stable, which results in a perfectly linear scaling. We find
that the updating step in DQMC is up to three orders of
magnitude faster than in HF-QMC for a large number of time
slices !L#200".

In more realistic simulations, increasing L is a conse-
quence of increasing # to access low temperatures for a fixed
order of systematic error !constant $%" $28,29%. In this case,
we do not expect to see any change in the scaling of HF-
QMC. However, in DQMC, an orthogonalization step which
scales as L2, has to be performed to avoid the round-off
errors. To show how the DQMC scaling changes, we also
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FIG. 5. !Color online" Density of states for the case study of
Fig. 4. The solid !dashed" line shows the results for HF-QMC
!DQMC with N!=2".
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FIG. 6. !Color online" The CPU time required for !a" updating
and !b" measurement parts of the HF-QMC and DQMC !N!=2"
algorithms versus the number of time slices on a 4"4 cluster. All
other quantities are kept constant. The lines show power-law fits of
the data. The diamond symbols show the CPU time in DQMC with
a constant $% !decreasing temperature" where orthogonalization is
performed to stabilize the matrix multiplications.
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FIG. 4. !Color online" Same as Fig. 3 for a 4"4 cluster. For this
cluster, the convergence of DQMC to HF-QMC is achieved with
N!=2. In !c", we also show the average sign for a finite-size !FS"
DQMC calculation on this cluster using the same model parameters.
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Simulation of Ultracold Gases in a Trap
We employed QUEST to study the emergence of local phases in a trapped two-
component Fermi gas in an optical lattice. QUEST allows the treatment of 
temperatures that are comparable or lower than those presently achievable in 
experiments and large enough systems that both magnetic and paired phases can 
be detected by inspection of the behavior of suitable short-range correlations. 

Emergence of strong correlation effects in the 
simulation of optical lattices. The system is 
confined by a harmonic potential that causes the 
density to vary and leads to the development of local 
phases. A Mott insulating domain is emerging in the 
density profile of panel A, in the form of a half-filled 
ring 6-10 lattice spacings from the trap center. The 
density fluctuations are minimized in this region while 
staggered magnetization and  the d-wave pairing 
show a pronounced maximum.

Optimal interaction strength for the observation of 
strong correlation physics. The (A) density, (B) 
density fluctuations, (C) nearest-neighbor spin 
correlations, and (D) next-nearest-neighbor d-wave 
pairing are shown for interaction strengths U = 4 t, 6 t, 8 
t, 10 t and 12 t at T = 0.5 t,  for 560 fermions.The inset 
of panel A is the double occupancy normalized by the 
number of particles, and the insets of panels B and C 
are the lattice averages of the local staggered 
magnetization and the d-wave pairing. An interaction 
strength of U = 8t causes the largest enhancement in 
spin correlation and produces regions with incipient 
superfluid order that surround the magnetic domain.

Publication: Simone Chiesa, Christopher N. Varney, Marcos Rigol, Richard T. Scalettar Magnetism and pairing of two-dimensional trapped 
fermions arXiv:1004.0970, 2010
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• QUEST is a part of SciDAC  project PETMAT for 
developing multi-scale many body codes, in which 
short length scales treated explicitly with  QMC, 
intermediate length scales treated diagrammatically 
using vertices obtained from the QMC, long length 
scales treated in the mean field. 

• The development of QUEST has been the key to study 
a new class of physical system: trapped fermionic 
atoms in optical lattices. These systems are 
characterized by the presence of a trapping potential 
that causes the system to become inhomogeneous and 
imposes the study clusters that would not have been 
manageable by legacy DQMC codes. 

• Parallelization of the DQMC simulation 
is extremely challenging due to the 
serial nature of underlying Markov chain 
and numerical stability issues. 

• We developed a hybrid granularity 
parallelization (HGP) scheme that 
combines algorithm and implementation 
techniques to explores the parallelism 
on different levels, such as parallel 
Markov chain and task decomposition, 
communicat ion and computat ion 
overlapping, message compression and 
load balancing. 

• Performance on an IBM Blue Gene/P 
system with 1014 computational 
processors have shown over a factor of 
80 speedup.
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