Eigenproblems in Resonant MEMS Design

David Bindel

UC Berkeley, CS Division

What are MEMS?

RF MEMS

Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Uses:
 - RF signal processing (better cell phones)
 - Sensing elements (e.g. chemical sensors)
 - Really high-pitch guitars

Micromechanical filters

Your cell phone is already mechanical!

- Uses a quartz surface-acoustic wave (SAW) filter
- Can do better using MEMS
 - MEMS filters can be placed on-chip
 - Versus SAWs: smaller, lower power

Success \implies "Calling Dick Tracy!"

Damping

- Want to minimize damping
 - Measure by "quality of resonance"

$$Q = \frac{|\omega|}{\mathrm{Im}(\omega)}$$

- Electronic filters have too much
- Understanding of damping in MEMS is lacking
- Several sources of damping
 - Anchor loss
 - Thermoelastic damping
 - Fluid damping
 - Material losses

Damping

- Want to minimize damping
 - Measure by "quality of resonance"

$$Q = \frac{|\omega|}{\mathrm{Im}(\omega)}$$

- Electronic filters have too much
- Understanding of damping in MEMS is lacking
- Several sources of damping
 - Anchor loss
 - Thermoelastic damping
 - Fluid damping
 - Material losses

Example: Disk anchor loss

- SiGe disk resonators built by E. Quévy
- Axisymmetric model with bicubic mesh, about 10K nodal points

Perfectly matched layers

- Model half-space with a perfectly matched layer
 - Complex coordinate change $x \mapsto z(x; \omega)$
 - Apply a complex coordinate transformation
 - Generates a non-physical absorbing layer
- Idea works with general linear wave equations
 - First applied to Maxwell's equations (Berengér 95)
 - Similar idea introduced earlier in quantum mechanics (*exterior complex scaling*, Simon 79)

Clamp solution at transformed end to isolate outgoing wave.

Choice of transformations

- \checkmark Generally z depends nontrivially on ω
 - Needed for frequency-independent attenuation
 - Common choice is

$$\frac{dz}{dx} = 1 - \sigma(x)/k$$

- What if we use a fixed transformation?
 - Can choose to absorb well over finite ω range
 - Solve a *linear* eigenvalue problem
 - Amounts to rational approx of true radiation condition (in discrete case)

Behavior with fixed transformations

• Start with $(K - \omega^2 M)u = e_1$

Behavior with fixed transformations

Schur complement to eliminate PML unknowns

Behavior with fixed transformations

Compare last coefficient with exact (discrete) BC

Complex symmetry

Finite element equations (forced vibration) are

$$-\omega^2 M u + K u = F$$

where M and K are complex symmetric.

- Row and column eigenvectors are transposes
- Second-order accuracy with modified Rayleigh quotient:

$$\theta(v) = (v^T K v) / (v^T M v)$$

- Can have $v^T M v \approx 0$
 - Propagating modes (continuous spectrum)
 - Not the modes of interest for resonators

Q variation

- Small geometry variation \implies large damping variation
- Solid line is simulated; dots are measured

Effect of varying film thickness

 Sudden dip in Q comes from an interaction between a (mostly) bending mode and a (mostly) radial mode

Model reduction

Would like a reduced model which

- Preserves second-order accuracy for converged eigs
- Keeps at least Arnoldi's accuracy otherwise
- Is physically meaningful

Idea:

- Build an Arnoldi basis V
- Double the size: $W = \operatorname{orth}([\operatorname{Re}(V), \operatorname{Im}(V)])$
- Use W as a projection basis
- Resulting system is still a Galerkin approximation with real shape functions for the continuum PML equations

Example: Disk resonator response

Example: Disk resonator response

Thermoelastic damping (TED)

u is displacement, $T = T_0 + \theta$ is temperature

$$\sigma = C\epsilon$$

$$\rho u_{tt} = \nabla \cdot \sigma$$

$$\rho c_v \theta_t = \nabla^2 \theta$$

Second-order mechanical + first-order thermal equation

Thermoelastic damping (TED)

u is displacement, $T = T_0 + \theta$ is temperature

 $\sigma = C\epsilon - \beta\theta 1$ $\rho u_{tt} = \nabla \cdot \sigma$ $\rho c_v \theta_t = \nabla^2 \theta - \beta T_0 \operatorname{tr}(\epsilon_t)$

- Second-order mechanical + first-order thermal equation
- Temperature change causes stress (thermal expansion)
- Volumetric strain rate causes thermal fluctuations

Thermoelastic damping (TED)

Non-dimensionalized equation:

$$\sigma = \hat{C}\epsilon - \xi\theta 1$$

$$u_{tt} = \nabla \cdot \sigma$$

$$\theta_t = \eta \nabla^2 \theta - \operatorname{tr}(\epsilon_t)$$

- **•** Typical MEMS scales: ξ and η small
- **Perturbation about** $\xi = 0$ is effective

Perturbation computation

Discrete time-harmonic equations:

$$-\omega^2 M_{uu}u + K_{uu}u + K_{ut}\theta = 0$$
$$i\omega D_{tt}\theta + K_{tt}\theta + i\omega D_{tu}u = 0$$

Approximate ω by perturbation about $K_{u\theta} = 0$:

$$-\omega_0^2 M_{uu} u_0 + K_{uu} u_0 = 0$$
$$i\omega_0 D_{\theta\theta} \theta_0 + K_{\theta\theta} \theta_0 + i\omega_0 D_{tu} u_0 = 0$$

Choose $v: v^T u_0 \neq 0$ and compute

$$\begin{bmatrix} (-\omega_0^2 M_{uu} + K_{uu}) & -2\omega_0 M_{uu} u_0 \\ v^T & 0 \end{bmatrix} \begin{bmatrix} \delta u \\ \delta \omega \end{bmatrix} = \begin{bmatrix} -K_{u\theta} \theta_0 \\ 0 \end{bmatrix}$$

Comparison to Zener's model

- Good match to Zener's approximation for TED in beams
- Real and imaginary parts after first-order correction agree to about three digits with Arnoldi

Conclusions

- MEMS resonator simulations give interesting problems
- Damped resonators \implies nonlinear eigenproblems
 - Introduce auxiliary variables to get exact or approximate linear problem
 - There's still useful structure in non-Hermitian problems!
- References:
 - Bindel and Govindjee. "Elastic PMLs for Resonator Anchor Loss Simulation." (IJNME, to appear)
 - HiQLab home page:

www.cs.berkeley.edu/d̃bindel/hiqlab/