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What are MEMS?
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RF MEMS

Microguitars from Cornell University (1997 and 2003)

MHz-GHz mechanical resonators

Uses:
RF signal processing (better cell phones)
Sensing elements (e.g. chemical sensors)
Really high-pitch guitars
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Micromechanical filters

Filtered signal

Mechanical filter

Capacitive senseCapacitive drive

Radio signal

Your cell phone is already mechanical!
Uses a quartz surface-acoustic wave (SAW) filter

Can do better using MEMS
MEMS filters can be placed on-chip
Versus SAWs: smaller, lower power

Success =⇒ “Calling Dick Tracy!”
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Damping

Want to minimize damping
Measure by “quality of resonance”

Q =
|ω|

Im(ω)

Electronic filters have too much
Understanding of damping in MEMS is lacking

Several sources of damping
Anchor loss
Thermoelastic damping
Fluid damping
Material losses
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Example: Disk anchor loss
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SiGe disk resonators built by E. Quévy

Axisymmetric model with bicubic mesh, about 10K
nodal points
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Perfectly matched layers

Model half-space with a perfectly matched layer
Complex coordinate change x 7→ z(x;ω)

Apply a complex coordinate transformation
Generates a non-physical absorbing layer

Idea works with general linear wave equations
First applied to Maxwell’s equations (Berengér 95)
Similar idea introduced earlier in quantum
mechanics (exterior complex scaling, Simon 79)
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Scalar wave example
−c2uzz − ω2u = 0

0 5 10 15 20
−1

−0.5

0

0.5

1
Outgoing wave exp(−iz)

0 5 10 15 20
−1

−0.5

0

0.5

1
Incoming wave exp(iz)

0 2 4 6 8 10 12 14 16 18
−5

−4

−3

−2

−1

0
Transformed coordinate z = x + iy

Eigenproblems inResonant MEMS Design – p.8/21



Scalar wave example
−c2uzz − ω2u = 0

0 5 10 15 20
−1

−0.5

0

0.5

1
Outgoing wave exp(−iz)

0 5 10 15 20
−2

−1

0

1

2

3
Incoming wave exp(iz)

0 2 4 6 8 10 12 14 16 18
−5

−4

−3

−2

−1

0
Transformed coordinate z = x + iy

Eigenproblems inResonant MEMS Design – p.8/21



Scalar wave example
−c2uzz − ω2u = 0

0 5 10 15 20
−1

−0.5

0

0.5

1
Outgoing wave exp(−iz)

0 5 10 15 20
−4

−2

0

2

4

6
Incoming wave exp(iz)

0 2 4 6 8 10 12 14 16 18
−5

−4

−3

−2

−1

0
Transformed coordinate z = x + iy

Eigenproblems inResonant MEMS Design – p.8/21



Scalar wave example
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Scalar wave example
−c2uzz − ω2u = 0
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Clamp solution at transformed end to isolate outgoing wave.
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Choice of transformations

Generally z depends nontrivially on ω

Needed for frequency-independent attenuation
Common choice is

dz

dx
= 1 − σ(x)/k

What if we use a fixed transformation?
Can choose to absorb well over finite ω range
Solve a linear eigenvalue problem
Amounts to rational approx of true radiation
condition (in discrete case)
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Behavior with fixed transformations
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Behavior with fixed transformations
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Behavior with fixed transformations
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Complex symmetry

Finite element equations (forced vibration) are

−ω2Mu + Ku = F

where M and K are complex symmetric.

Row and column eigenvectors are transposes

Second-order accuracy with modified Rayleigh quotient:

θ(v) = (vTKv)/(vT Mv)

Can have vT Mv ≈ 0

Propagating modes (continuous spectrum)
Not the modes of interest for resonators
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Q variation
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Small geometry variation =⇒ large damping variation

Solid line is simulated; dots are measured
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Effect of varying film thickness
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Sudden dip in Q comes from an interaction between a
(mostly) bending mode and a (mostly) radial mode
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Model reduction

Would like a reduced model which

Preserves second-order accuracy for converged eigs

Keeps at least Arnoldi’s accuracy otherwise

Is physically meaningful

Idea:

Build an Arnoldi basis V

Double the size: W = orth([Re(V ), Im(V )])

Use W as a projection basis

Resulting system is still a Galerkin approximation with
real shape functions for the continuum PML equations
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Example: Disk resonator response
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Example: Disk resonator response
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Thermoelastic damping (TED)

u is displacement, T = T0 + θ is temperature

σ = Cε−βθ1

ρutt = ∇ · σ

ρcvθt = ∇2θ−βT0 tr(εt)

Second-order mechanical + first-order thermal equation
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Thermoelastic damping (TED)

u is displacement, T = T0 + θ is temperature

σ = Cε−βθ1

ρutt = ∇ · σ

ρcvθt = ∇2θ−βT0 tr(εt)

Second-order mechanical + first-order thermal equation

Temperature change causes stress (thermal expansion)

Volumetric strain rate causes thermal fluctuations
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Thermoelastic damping (TED)

Non-dimensionalized equation:

σ = Ĉε − ξθ1

utt = ∇ · σ

θt = η∇2θ − tr(εt)

Typical MEMS scales: ξ and η small

Perturbation about ξ = 0 is effective
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Perturbation computation

Discrete time-harmonic equations:

−ω2Muuu + Kuuu + Kutθ = 0

iωDttθ + Kttθ + iωDtuu = 0

Approximate ω by perturbation about Kuθ = 0:

−ω2

0Muuu0 + Kuuu0 = 0

iω0Dθθθ0 + Kθθθ0 + iω0Dtuu0 = 0

Choose v : vT u0 6= 0 and compute
[

(−ω2
0
Muu + Kuu) −2ω0Muuu0

vT 0

] [

δu

δω

]

=

[

−Kuθθ0

0

]
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Comparison to Zener’s model
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HiQlab Results 

Good match to Zener’s approximation for TED in beams

Real and imaginary parts after first-order correction
agree to about three digits with Arnoldi
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Conclusions

MEMS resonator simulations give interesting problems

Damped resonators =⇒ nonlinear eigenproblems
Introduce auxiliary variables to get exact or
approximate linear problem
There’s still useful structure in non-Hermitian
problems!

References:
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