

Solving Nonlinear Eigenproblems in Accelerator Cavity Design

L. Lee, L. Ge, Z. Li, C. Ng, and K. Ko, Stanford Linear Accelerator Center

B. Liao, Z. Bai, University of California, Davis

W. Gao, C. Yang, P. Husbands, and E. G. Ng, Lawrence Berkeley Lab

Overview

Background

- Eigenvalue problem for RF cavity with external coupling
- Algorithms used
 - Second order Arnoldi (SOAR)
 - Nonlinear Arnoldi
 - Self consistent loop (SCL)
- Numerical examples
 - Linac Coherent Light Source RF-gun
 - Accelerating cavity for International Linear Collider
- Summary and Future work

DOE HEP SciDAC Project-

Electromagnetics System Simulations (ESS)

- SLAC leads the <u>Electromagnetic Systems Simulation</u> (ESS) component in "Advanced Computing for 21st Century Accelerator Science and Technology" project
 - Concentrates on developing parallel tools based on unstructured grids for the design, analysis, and optimization of complex electromagnetic components and systems in accelerators
 - Applies these tools to improve existing facilities, to design future accelerators, and to advance accelerator science
 - Collaborates with SAPP/ISIC collaborators to overcome CS/AM Barriers in solving challenging electromagnetic modeling problems that require Large-scale simulations

SciDAC ESS Team

Advanced Computations Department

Accelerator Modeling	Comp	outational Mathematic	<u>s</u> Comput	ing Technologies	
V. Ivanov, A. Kabel, K. Ko, Z. Li, C. Ng, A. Candel		L. Lee, L. Ge, C. Sheng, H. Jiang, E. Prudencio	N. Folw G. Schi R. Uple	N. Folwell, A. Guetz, G. Schussman, R. Uplenchwar	
ISICs – TST	T, TOPS,	PERC; SAPP- Stan	ford, LBN	L, UCD	
<u>LBNL</u>		LLNL		<u>SNL</u>	
E. Ng, W. Gao, P. Husbands, X. Li, C. Yang	L. Dia B. He	achin, D. Brown, K. Cl enshaw, D. Quinlan	hand, P. I K. I	Knupp, T. Tautges, Devine	
<u>CMU</u> <u>Col</u>	<u>umbia</u>	UCD	<u>Stanford</u>	<u>RPI</u>	
O. Ghattas, V. D. H Akcelik	Keyes	B. Liao, Z. Bai, K. Ma, H. Yu,	G. Golub	M. Shephard, A. Bauer, E. Seol	

Overview

- Background
- Eigenvalue problem for RF cavity with external coupling
- Algorithms used
 - Second order Arnoldi (SOAR)
 - Nonlinear Arnoldi
 - Self consistent loop (SCL)
- Numerical examples
 - Linac Coherent Light Source RF-gun
 - Accelerating cavity for International Linear Collider
- Summary and Future work

RF Cavity Eigenvalue Problem

Find frequency and field vector of normal modes:

Cavity with External Coupling

Vector wave equation with waveguide boundary conditions can be modeled by a non-linear eigenvalue problem

$$\begin{split} \mathbf{K}x + i \sum_{j} \sqrt{k^2 - k_{cj}^2} \mathbf{W}_j x &= k^2 \mathbf{M} x \\ \text{With } (\mathbf{W}_j)_{ik} &= \int_{\Gamma} (n \times \mathbf{N}_i) \cdot (n \times \mathbf{N}_k) \, d\Gamma \end{split}$$

Overview

- Background
- Eigenvalue problem for RF cavity with external coupling
- Algorithms used
 - Second order Arnoldi (SOAR)
 - Nonlinear Arnoldi
 - Self consistent loop (SCL)
- Numerical examples
 - Linac Coherent Light Source RF-gun
 - Accelerating cavity for International Linear Collider
- Summary and Future work

Quadratric Eigenvalue Problem

- Consider only one mode propagating in the waveguides

Second-Order Krylov Space (Bai et al, 05)

Krylov subspace:

 $\mathcal{K}_n(\mathbf{A}, u) = span\{u, \mathbf{A}u, ..., \mathbf{A}^{n-1}u\}$ Given matrix **A** and **B**, vector u,

$$r_{0} = u$$

$$r_{1} = \mathbf{A}r_{0}$$

$$r_{j} = \mathbf{A}r_{j-1} + \mathbf{B}r_{j-2}$$

the sequence r_0 , r_1 , ..., r_{n-1} is called a secondorder *Krylov* sequence.

 $\mathcal{G}_n(\mathbf{A}, \mathbf{B}, u) = span\{r_0, r_1, ..., r_{n-1}\}$

Applying Second Order Arnoldi

Given $(\lambda^2 M + \lambda D + K)x = 0$, $A = -M^{-1}D$ $B = -M^{-1}K$

- Generate orthonormal basis \mathbf{Q}_n of secondorder Krylov subspace $\mathcal{G}_n(\mathbf{A}, \mathbf{B}, u)$
- Compute projection matrices $\mathbf{M}_n = \mathbf{Q}_n^T \mathbf{M} \mathbf{Q}_n, \ \mathbf{D}_n = \mathbf{Q}_n^T \mathbf{D} \mathbf{Q}_n, \ \mathbf{K}_n = \mathbf{Q}_n^T \mathbf{K} \mathbf{Q}_n$
- Solve the QEP: $(\theta^2 \mathbf{M}_n + \theta \mathbf{D}_n + \mathbf{K}_n)g = 0$
- Compute Ritz pairs $(\theta, z) = \left(\theta, \frac{\mathbf{Q}_n g}{||\mathbf{Q}_n g||_2}\right)$
- Test for convergence

SOAR directly applies to QEP, converges faster

Single Cavity coupled to External Waveguides

Parallel SOAR implemented into SLAC's parallel 3D finite element eigensolver Omega3P

- External waveguides terminated with waveguide BC (only 1 propagating mode)
- Results agree remarkably with experiments
 - Frequency=9.396GHz
 - External Q=178 $Q_{ext} = \frac{Re(f)}{2 \times Im(f)}$

Linearization versus SOAR

Nonlinear Arnoldi Method (Voss et al. '02,'03)

 $T(\lambda)x = 0, \ \lambda = k^2$ and

 $\mathbf{T}(\lambda) = \mathbf{K} + i \sum_{j} \sqrt{\lambda - k_{cj}^2} \mathbf{W}_j - \lambda \mathbf{M}$

- An iterative projection method
- Eigenvalues are determined one after another
- New search direction is formed via the residual inverse iteration (Neumaier '85)

 $v = \mathbf{T}(\sigma)^{-1} \mathbf{T}'(\hat{\lambda}) \hat{x}$

- σ is the shift
- $T(\sigma)^{-1}$ Can be treated as preconditioner
- The projected nonlinear problem is formed through Arnoldi-type procedure

Basic Algorithm of Nonlinear Arnoldi

Solve & Update projected problems

- Projected problems are small and dense
- Methods (nonlinear eigensolvers)
 - Method of successive linear problem (Ruhe '73)
 - (Residual) inverse iteration method
- Update of projected problem:

 $\mathbf{T}(\lambda) = \mathbf{K} + i \sum_{j} \sqrt{\lambda - k_{cj}^2} \mathbf{W}_j - \lambda \mathbf{M} = \sum_{j} f_j(\lambda) \mathbf{C}_j$

Then $\mathbf{T}_{V_k}(\lambda) = \sum_j f_j(\lambda) V_k^H \mathbf{C}_j V_k = \sum_j f_j(\lambda) \mathbf{C}_{j,k}$

and matrices C_j can be updated according to $\mathbf{C}_{j,k} = \begin{pmatrix} \mathbf{C}_{j,k-1} & V_{k-1}^H C_j v \\ v^H \mathbf{C}_j V_{k-1} & v_H C_j v \end{pmatrix}$

Testing Example -RF-gun Cavity with Two Ports

Eigenvalues are typically clustered in our problems.
 To find an eigenvalue in the next cluster requires more efforts.
 May miss eigenvalues in the calculatioon!

Self Consistent Loop (SCL)

Kx + $i \sum_{j} \sqrt{k^2 - k_{cj}^2} \mathbf{W}_j x = k^2 \mathbf{M} x$ ■ Ignore the waveguide terms first and solve **K** $x = k^2 \mathbf{M} x$

Loop until converge (often in 3 iterations)

- Use the *k* computed in the previous step and evaluate $\hat{\mathbf{K}} = \mathbf{K} + i \sum_{j} \sqrt{k^2 - k_{cj}^2} \mathbf{W}_j$
- Then solve $\hat{\mathbf{K}}x = k^2 \mathbf{M}x$

No convergence proof but often converges

Overview

- Background
- Eigenvalue problem for RF cavity with external coupling
- Algorithms
 - Second order Arnoldi (SOAR)
 - Nonlinear Arnoldi
 - Self consistent loop (SCL)
- Numerical examples
 - Linac Coherent Light Source RF-gun
 - Accelerating cavity for International Linear Collider
- Summary and Future work

Linac Coherent Light Source (LCLS) RF-Gun Design

New Design

- Dual RF feeds: Eliminate dipole modes
- Larger rounding of Iris: Reduce pulsed heating
- Racetrack cell shape: Minimize quadruple mode

Typical run: NDOFs: 3.2 million NNZ: 440 million NCPUs: 256/32 Memory: 400GB Time: 2 hours for 2 eigen-modes

Accelerating Cavity for International Linear Collider (ILC)

9-cell superconducting cavity coupled to one input coupler and two Higher-Order-Mode couplers.

□ All couplers terminate in coax TEM mode with the same k_c

$$\mathbf{K}x + i\sum_{j}\sqrt{k^2 - k_{cj}^2}\mathbf{W}_j x = k^2 \mathbf{M}x \implies \mathbf{K}x + i\sqrt{k^2 - k_c^2}\sum_{j}\mathbf{W}_j x = k^2 \mathbf{M}x$$

□ SOAR is used mainly $\lambda^2 Mx - i\lambda \sum_j W_j x + (k_c^2 M - K)x = 0$ □SCL is used when beampipes are open

Computational Challenges

- Large mesh to resolve fine features accurately
- Many tightly clustered interior complex eigenvalues

ILC Cavity Simulation

Numerical results show good agreement with measured data on frequency f and Q_{ext} of 1st band dipole modes

 $Q_{ext} = \frac{Re(f)}{2 \times Im(f)}$ where $f = \frac{c}{2\pi}k$

Typical run: NDOFs: 3.2 million NNZ: 132 million NCPUs: 768/96 Memory: 300GB Time: 150s per eigen-modes

Overview

- Background
- Eigenvalue problem for RF cavity with external coupling
- Algorithms
 - Second order Arnoldi (SOAR)
 - Nonlinear Arnoldi
 - Self consistent loop (SCL)
- Numerical examples
 - Linac Coherent Light Source RF-gun
 - Accelerating cavity for International Linear Collider
- Summary and Future work

- SOAR and SCL
 - Successfully applied in accelerator cavity design for simulating open cavities
- Nonlinear Arnoldi
 - Initial results are promising
 - Need further study in finding multiple eigenvalues
 - To be implemented in Omega3P in parallel

Future Work

Faster and robust methods for solving multiple waveguide modes:

$$\mathbf{K}x + i\sqrt{k^2 - k_{c1}^2}\mathbf{W}_1x + i\sqrt{k^2 - k_{c2}^2}\mathbf{W}_2x = k^2\mathbf{M}x$$

- Model chain of ILC cavities
 - More nonlinear terms
 - Much bigger systems

Up to 12 cavities connected together

Residual Inverse Iteration

Start from approximate eigenvalue σ , x_1 , e with $e^H x_1 = 1$

for $\ell = 1, 2, \ldots$ until convergence do solve $e^H T(\sigma)^{-1} T(\lambda_{\ell+1}) x_{\ell} = 0$ for $\lambda_{\ell+1}$ compute the residual $r_{\ell} = T(\lambda_{\ell+1})x_{\ell}$ solve $T(\sigma)d_{\ell} = r_{\ell}$ for d_{ℓ} set $y_{\ell+1} = x_\ell - d_\ell$ normalize $x_{\ell+1} = y_{\ell+1} / e^H y_{\ell+1}$ end for

Algorithm with additional features

Example I - TwoTerms

 $T(\lambda)x = \left(K + i\sqrt{\lambda^2 - \lambda_0^2}W_0 + i\sqrt{\lambda^2 - \lambda_1^2}W_1 - \lambda^2 M\right)x = 0$

N = 7791

Second Order Arnoldi (SOAR)

Inputs: $\mathbf{A}, \mathbf{B}, \mathbf{u} \neq \mathbf{0}, n \geq 1$ **Output:** an orthonormal basis of $\mathcal{G}_n(\mathbf{A}, \mathbf{B}; \mathbf{u})$: $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$ 1. $q_1 = u / ||u||$ basis vector auxiliary vector 2. $p_1 = 0$ 3. for j = 1, 2, ..., n do 4. $\mathbf{r} = \mathbf{A}\mathbf{q}_i + \mathbf{B}\mathbf{p}_i$ 5. $\mathbf{s} = \mathbf{q}_i$ for i = 1, 2, ..., j do orthogonal wrt q-vectors 6. $t_{ii} = \mathbf{q}_i^{\mathrm{T}} \mathbf{r}$ 7. 8. $\mathbf{r} := \mathbf{r} - \mathbf{q}_i t_{ij}$ 9. $\mathbf{s} := \mathbf{s} - \mathbf{p}_i \mathbf{t}_{ij}$ $t_{i+1,i} = \|\mathbf{r}\|_2$ 10. if $t_{i+1,i} = 0$, stop deflation or breakdown 11. $\mathbf{q}_{j+1} = \mathbf{r}/t_{j+1,j}$ 12. basis vector 13. $p_{j+1} = s/t_{j+1,j}$ auxiliary vector

Comparison of Methods

- On NERSC's IBM SP, ILC cavity model requires:
- NDOFs=3.2million, NCPUs=768, Memory=300GB
- WSMP for solving sparse linear systems

Method	# of Modes	Wall clock
SOAR	18	2634s
SCL	1	4800s

- SOAR is able to solve multiple eigen-pairs with one sparse direct factorization
- Using SCL we have to solve modes one-by-one

SOAR Implementation using ITL

- Iterative Template Library designed for maximal reuse
 - Linear algebra operations interface to different software packages(BLAS, μBLAS, MTL, A++/P++)
 - Krylov subspace iterative methods for linear systems
 - Interface to sparse direct solvers (WSMP, SuperLU, MUMPS)
 - Serial and parallel algorithms share the same code with different interfaces
- SOAR implementation using ITL has almost one-toone correspondence between algorithm description and C++ code
- Shift-and-Invert spectral transformation included

SOAR versus Arnodi (Linearization)

SOAR in matrix notation: $\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{I} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{Q}_n \\ \mathbf{P}_n \end{pmatrix} = \begin{pmatrix} \mathbf{Q}_{n+1} \\ \mathbf{P}_{n+1} \end{pmatrix} \widehat{\mathbf{T}}_n$

Arnodi in matrix notation:

 $\begin{array}{ccc} \mathbf{A} & \mathbf{B} \\ \mathbf{I} & \mathbf{0} \end{array} \mathbf{V}_n = \mathbf{V}_{n-1} \mathbf{V}_n \mathbf{V}_n$

Difference: Orthonormality